Gas exchange parameters, muscle blood flow and electromechanical properties of the plantar flexors View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1987-01

AUTHORS

T. Moritani, M. J. Berry, D. W. Bacharach, E. Nakamura

ABSTRACT

Sixteen men were tested to determine\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\dot V_{{\text{O}}_{{\text{2 max}}} } $$ \end{document} (ml · kg−1 · min−1), anaerobic threshold\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\dot V_{{\text{O}}_{\text{2}} } {\text{ (AT}}\dot V_{{\text{O}}_{\text{2}} } {\text{)}}$$ \end{document} and oxygen kinetics (time constant, T. C.) during running on a treadmill. For measuring maximal calf blood flow (maxBF, ml · 100 ml−1 · min−1), venous occlusion plethysmography was employed immediately following a combination of arterial occlusion and toe raising exercise to exhaustion. In addition, supramaximal electrical stimulations were given to determine maximal calf twitch force (Fmax, N), maximal rate of twitch force development (dF/dt) and relaxation (R · dF/dt, N · ms−1) and electro-mechanical delay time (EMD, ms). Results demonstrated that\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\dot V_{{\text{O}}_{{\text{2 max}}} } $$ \end{document} and maxBF were all inversely related to T.C. (p<0.05). MaxBF and\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\text{AT}}\dot V_{{\text{O}}_{\text{2}} } $$ \end{document} showed the highest correlation (r = 0.89,p<0.01). Stepwise multiple linear regression analyses revealed that variance in\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\dot V_{{\text{O}}_{{\text{2 max}}} } $$ \end{document} (60%) and\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\text{AT}}\dot V_{{\text{O}}_{\text{2}} } $$ \end{document} (84%) could be accounted for by the combined effects of the following peripheral factors:\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{gathered} \dot V_{{\text{O}}_{{\text{2 max}}} } = 51,25 - 3.24({{{\text{dF}}} \mathord{\left/ {\vphantom {{{\text{dF}}} {{\text{dt}}}}} \right. \kern-\nulldelimiterspace} {{\text{dt}}}}) + 0.14(\max {\text{BF}}),{\text{ and}} \hfill \\ {\text{AT}}\dot V_{{\text{O}}_{\text{2}} } = 11.68 + 0.42(\max {\text{BF}}) - 0.2({\text{F}}_{{\text{max}}} ) \hfill \\ \end{gathered} $$ \end{document} These findings, together with the results of cluster analysis, suggest a tight link between\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\text{AT}}\dot V_{{\text{O}}_{\text{2}} } $$ \end{document} and peripheral blood flow capacity. On the other hand, a moderate correlation (r=0.64,p<0.01) between\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\dot V_{{\text{O}}_{{\text{2 max}}} } $$ \end{document} and maxBF might be due in part to individual differences in oxygen extraction-utilization capacity during heavy exercise above anaerobic threshold. More... »

PAGES

30-37

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00696372

DOI

http://dx.doi.org/10.1007/bf00696372

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030735081

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/3830139


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electrophysiology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Kinetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Muscle Contraction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Muscles", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oxygen", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oxygen Consumption", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pulmonary Gas Exchange", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Regional Blood Flow", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Health and Physical Education, Texas A & M University, 77843, College Station, Texas, USA", 
          "id": "http://www.grid.ac/institutes/grid.264756.4", 
          "name": [
            "Human Performance Laboratory, Hoken-taiku, Kyoto University, Sakyo-ku, 606, Kyoto, Japan", 
            "Department of Health and Physical Education, Texas A & M University, 77843, College Station, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moritani", 
        "givenName": "T.", 
        "id": "sg:person.0777143456.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777143456.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Health and Physical Education, Texas A & M University, 77843, College Station, Texas, USA", 
          "id": "http://www.grid.ac/institutes/grid.264756.4", 
          "name": [
            "Human Performance Laboratory, Hoken-taiku, Kyoto University, Sakyo-ku, 606, Kyoto, Japan", 
            "Department of Health and Physical Education, Texas A & M University, 77843, College Station, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Berry", 
        "givenName": "M. J.", 
        "id": "sg:person.0662764543.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0662764543.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Health and Physical Education, Texas A & M University, 77843, College Station, Texas, USA", 
          "id": "http://www.grid.ac/institutes/grid.264756.4", 
          "name": [
            "Human Performance Laboratory, Hoken-taiku, Kyoto University, Sakyo-ku, 606, Kyoto, Japan", 
            "Department of Health and Physical Education, Texas A & M University, 77843, College Station, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bacharach", 
        "givenName": "D. W.", 
        "id": "sg:person.0731077743.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731077743.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Health and Physical Education, Texas A & M University, 77843, College Station, Texas, USA", 
          "id": "http://www.grid.ac/institutes/grid.264756.4", 
          "name": [
            "Human Performance Laboratory, Hoken-taiku, Kyoto University, Sakyo-ku, 606, Kyoto, Japan", 
            "Department of Health and Physical Education, Texas A & M University, 77843, College Station, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakamura", 
        "givenName": "E.", 
        "id": "sg:person.010277610251.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010277610251.53"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00421757", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015965663", 
          "https://doi.org/10.1007/bf00421757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00429025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031319278", 
          "https://doi.org/10.1007/bf00429025"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1987-01", 
    "datePublishedReg": "1987-01-01", 
    "description": "Sixteen men were tested to determine\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$\\dot V_{{\\text{O}}_{{\\text{2 max}}} } $$\n\\end{document} (ml \u00b7 kg\u22121 \u00b7 min\u22121), anaerobic threshold\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$\\dot V_{{\\text{O}}_{\\text{2}} } {\\text{ (AT}}\\dot V_{{\\text{O}}_{\\text{2}} } {\\text{)}}$$\n\\end{document} and oxygen kinetics (time constant, T. C.) during running on a treadmill. For measuring maximal calf blood flow (maxBF, ml \u00b7 100 ml\u22121 \u00b7 min\u22121), venous occlusion plethysmography was employed immediately following a combination of arterial occlusion and toe raising exercise to exhaustion. In addition, supramaximal electrical stimulations were given to determine maximal calf twitch force (Fmax, N), maximal rate of twitch force development (dF/dt) and relaxation (R \u00b7 dF/dt, N \u00b7 ms\u22121) and electro-mechanical delay time (EMD, ms). Results demonstrated that\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$\\dot V_{{\\text{O}}_{{\\text{2 max}}} } $$\n\\end{document} and maxBF were all inversely related to T.C. (p<0.05). MaxBF and\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$${\\text{AT}}\\dot V_{{\\text{O}}_{\\text{2}} } $$\n\\end{document} showed the highest correlation (r = 0.89,p<0.01). Stepwise multiple linear regression analyses revealed that variance in\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$\\dot V_{{\\text{O}}_{{\\text{2 max}}} } $$\n\\end{document} (60%) and\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$${\\text{AT}}\\dot V_{{\\text{O}}_{\\text{2}} } $$\n\\end{document} (84%) could be accounted for by the combined effects of the following peripheral factors:\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$\\begin{gathered}  \\dot V_{{\\text{O}}_{{\\text{2 max}}} }  = 51,25 - 3.24({{{\\text{dF}}} \\mathord{\\left/ {\\vphantom {{{\\text{dF}}} {{\\text{dt}}}}} \\right. \\kern-\\nulldelimiterspace} {{\\text{dt}}}}) + 0.14(\\max {\\text{BF}}),{\\text{ and}} \\hfill \\\\  {\\text{AT}}\\dot V_{{\\text{O}}_{\\text{2}} }  = 11.68 + 0.42(\\max {\\text{BF}}) - 0.2({\\text{F}}_{{\\text{max}}} ) \\hfill \\\\ \\end{gathered} $$\n\\end{document} These findings, together with the results of cluster analysis, suggest a tight link between\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$${\\text{AT}}\\dot V_{{\\text{O}}_{\\text{2}} } $$\n\\end{document} and peripheral blood flow capacity. On the other hand, a moderate correlation (r=0.64,p<0.01) between\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$\\dot V_{{\\text{O}}_{{\\text{2 max}}} } $$\n\\end{document} and maxBF might be due in part to individual differences in oxygen extraction-utilization capacity during heavy exercise above anaerobic threshold.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf00696372", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1319730", 
        "issn": [
          "1439-6319", 
          "1432-1025"
        ], 
        "name": "European Journal of Applied Physiology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "56"
      }
    ], 
    "keywords": [
      "blood flow", 
      "maximal calf blood flow", 
      "calf blood flow", 
      "venous occlusion plethysmography", 
      "muscle blood flow", 
      "supramaximal electrical stimulation", 
      "blood flow capacity", 
      "stepwise multiple linear regression analysis", 
      "occlusion plethysmography", 
      "arterial occlusion", 
      "plantar flexors", 
      "heavy exercise", 
      "multiple linear regression analysis", 
      "twitch force", 
      "anaerobic threshold", 
      "electrical stimulation", 
      "linear regression analysis", 
      "twitch force development", 
      "force development", 
      "moderate correlation", 
      "regression analysis", 
      "maximal rate", 
      "exercise", 
      "oxygen kinetics", 
      "plethysmography", 
      "flexors", 
      "treadmill", 
      "occlusion", 
      "stimulation", 
      "men", 
      "high correlation", 
      "correlation", 
      "toe", 
      "exhaustion", 
      "findings", 
      "differences", 
      "max", 
      "peripherals", 
      "tight link", 
      "individual differences", 
      "rate", 
      "effect", 
      "analysis", 
      "results", 
      "capacity", 
      "threshold", 
      "combination", 
      "gas exchange parameters", 
      "addition", 
      "development", 
      "cluster analysis", 
      "time", 
      "hand", 
      "T.C.", 
      "variance", 
      "part", 
      "relaxation", 
      "flow", 
      "link", 
      "anaerobic", 
      "parameters", 
      "flow capacity", 
      "kinetics", 
      "exchange parameters", 
      "force", 
      "properties", 
      "delay time", 
      "electromechanical properties"
    ], 
    "name": "Gas exchange parameters, muscle blood flow and electromechanical properties of the plantar flexors", 
    "pagination": "30-37", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030735081"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00696372"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "3830139"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00696372", 
      "https://app.dimensions.ai/details/publication/pub.1030735081"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_214.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf00696372"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00696372'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00696372'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00696372'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00696372'


 

This table displays all metadata directly associated to this object as RDF triples.

199 TRIPLES      21 PREDICATES      106 URIs      96 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00696372 schema:about N40ab9760413a4fb89baea6ffe736b3cf
2 N5a6d7b3c4c5c40f2a5160c9672f04ad1
3 N6255953b96ca4ebab801981283f4c8de
4 N632bea76a99e43ca8c078ee7e2381bce
5 N7b6db114c3e34a58bb8d00cf38d7ce30
6 Ncede4150d0b643c3a1a49fd485d14c4d
7 Ndcfa61f49b3b4b159186da33c1cc7a56
8 Ne4262b7b667b4203a3b2f4f6b43782a6
9 Nf1c4e329d32a4ad1bf80169fbc8c2a13
10 Nf8e7b130a373411a8b30ce34d1d06859
11 anzsrc-for:11
12 anzsrc-for:1117
13 schema:author N6b0f685296764c70bae069a5001cbc47
14 schema:citation sg:pub.10.1007/bf00421757
15 sg:pub.10.1007/bf00429025
16 schema:datePublished 1987-01
17 schema:datePublishedReg 1987-01-01
18 schema:description Sixteen men were tested to determine\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\dot V_{{\text{O}}_{{\text{2 max}}} } $$ \end{document} (ml · kg−1 · min−1), anaerobic threshold\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\dot V_{{\text{O}}_{\text{2}} } {\text{ (AT}}\dot V_{{\text{O}}_{\text{2}} } {\text{)}}$$ \end{document} and oxygen kinetics (time constant, T. C.) during running on a treadmill. For measuring maximal calf blood flow (maxBF, ml · 100 ml−1 · min−1), venous occlusion plethysmography was employed immediately following a combination of arterial occlusion and toe raising exercise to exhaustion. In addition, supramaximal electrical stimulations were given to determine maximal calf twitch force (Fmax, N), maximal rate of twitch force development (dF/dt) and relaxation (R · dF/dt, N · ms−1) and electro-mechanical delay time (EMD, ms). Results demonstrated that\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\dot V_{{\text{O}}_{{\text{2 max}}} } $$ \end{document} and maxBF were all inversely related to T.C. (p<0.05). MaxBF and\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\text{AT}}\dot V_{{\text{O}}_{\text{2}} } $$ \end{document} showed the highest correlation (r = 0.89,p<0.01). Stepwise multiple linear regression analyses revealed that variance in\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\dot V_{{\text{O}}_{{\text{2 max}}} } $$ \end{document} (60%) and\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\text{AT}}\dot V_{{\text{O}}_{\text{2}} } $$ \end{document} (84%) could be accounted for by the combined effects of the following peripheral factors:\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{gathered} \dot V_{{\text{O}}_{{\text{2 max}}} } = 51,25 - 3.24({{{\text{dF}}} \mathord{\left/ {\vphantom {{{\text{dF}}} {{\text{dt}}}}} \right. \kern-\nulldelimiterspace} {{\text{dt}}}}) + 0.14(\max {\text{BF}}),{\text{ and}} \hfill \\ {\text{AT}}\dot V_{{\text{O}}_{\text{2}} } = 11.68 + 0.42(\max {\text{BF}}) - 0.2({\text{F}}_{{\text{max}}} ) \hfill \\ \end{gathered} $$ \end{document} These findings, together with the results of cluster analysis, suggest a tight link between\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\text{AT}}\dot V_{{\text{O}}_{\text{2}} } $$ \end{document} and peripheral blood flow capacity. On the other hand, a moderate correlation (r=0.64,p<0.01) between\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\dot V_{{\text{O}}_{{\text{2 max}}} } $$ \end{document} and maxBF might be due in part to individual differences in oxygen extraction-utilization capacity during heavy exercise above anaerobic threshold.
19 schema:genre article
20 schema:isAccessibleForFree false
21 schema:isPartOf N8350cc80b1bf4785a4af9b98052effe5
22 N98133925b7424013a8256486c73e7512
23 sg:journal.1319730
24 schema:keywords T.C.
25 addition
26 anaerobic
27 anaerobic threshold
28 analysis
29 arterial occlusion
30 blood flow
31 blood flow capacity
32 calf blood flow
33 capacity
34 cluster analysis
35 combination
36 correlation
37 delay time
38 development
39 differences
40 effect
41 electrical stimulation
42 electromechanical properties
43 exchange parameters
44 exercise
45 exhaustion
46 findings
47 flexors
48 flow
49 flow capacity
50 force
51 force development
52 gas exchange parameters
53 hand
54 heavy exercise
55 high correlation
56 individual differences
57 kinetics
58 linear regression analysis
59 link
60 max
61 maximal calf blood flow
62 maximal rate
63 men
64 moderate correlation
65 multiple linear regression analysis
66 muscle blood flow
67 occlusion
68 occlusion plethysmography
69 oxygen kinetics
70 parameters
71 part
72 peripherals
73 plantar flexors
74 plethysmography
75 properties
76 rate
77 regression analysis
78 relaxation
79 results
80 stepwise multiple linear regression analysis
81 stimulation
82 supramaximal electrical stimulation
83 threshold
84 tight link
85 time
86 toe
87 treadmill
88 twitch force
89 twitch force development
90 variance
91 venous occlusion plethysmography
92 schema:name Gas exchange parameters, muscle blood flow and electromechanical properties of the plantar flexors
93 schema:pagination 30-37
94 schema:productId N13a0af17c2094b2689a005155d2ff29c
95 N933181d1040145688207123edb29b80d
96 Nf46ab211969c4b79a8a0ea83e11d72c8
97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030735081
98 https://doi.org/10.1007/bf00696372
99 schema:sdDatePublished 2022-09-02T15:47
100 schema:sdLicense https://scigraph.springernature.com/explorer/license/
101 schema:sdPublisher Na991916dcafb4b988537bf20f5c2f5ee
102 schema:url https://doi.org/10.1007/bf00696372
103 sgo:license sg:explorer/license/
104 sgo:sdDataset articles
105 rdf:type schema:ScholarlyArticle
106 N13a0af17c2094b2689a005155d2ff29c schema:name doi
107 schema:value 10.1007/bf00696372
108 rdf:type schema:PropertyValue
109 N40ab9760413a4fb89baea6ffe736b3cf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Electrophysiology
111 rdf:type schema:DefinedTerm
112 N5a6d7b3c4c5c40f2a5160c9672f04ad1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Oxygen Consumption
114 rdf:type schema:DefinedTerm
115 N6255953b96ca4ebab801981283f4c8de schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Muscle Contraction
117 rdf:type schema:DefinedTerm
118 N632bea76a99e43ca8c078ee7e2381bce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Regional Blood Flow
120 rdf:type schema:DefinedTerm
121 N6b0f685296764c70bae069a5001cbc47 rdf:first sg:person.0777143456.28
122 rdf:rest N7939f8ee0bd24bf9b312a1a563021545
123 N7939f8ee0bd24bf9b312a1a563021545 rdf:first sg:person.0662764543.21
124 rdf:rest Nd1e25e6554ec466d85af20a9d4ed52fa
125 N7b6db114c3e34a58bb8d00cf38d7ce30 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Muscles
127 rdf:type schema:DefinedTerm
128 N8350cc80b1bf4785a4af9b98052effe5 schema:issueNumber 1
129 rdf:type schema:PublicationIssue
130 N933181d1040145688207123edb29b80d schema:name pubmed_id
131 schema:value 3830139
132 rdf:type schema:PropertyValue
133 N98133925b7424013a8256486c73e7512 schema:volumeNumber 56
134 rdf:type schema:PublicationVolume
135 Na991916dcafb4b988537bf20f5c2f5ee schema:name Springer Nature - SN SciGraph project
136 rdf:type schema:Organization
137 Ncede4150d0b643c3a1a49fd485d14c4d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Oxygen
139 rdf:type schema:DefinedTerm
140 Nd1e25e6554ec466d85af20a9d4ed52fa rdf:first sg:person.0731077743.85
141 rdf:rest Nfe6a650fbc954e5caab0d4b4e5cd9cea
142 Ndcfa61f49b3b4b159186da33c1cc7a56 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Pulmonary Gas Exchange
144 rdf:type schema:DefinedTerm
145 Ne4262b7b667b4203a3b2f4f6b43782a6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Humans
147 rdf:type schema:DefinedTerm
148 Nf1c4e329d32a4ad1bf80169fbc8c2a13 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Kinetics
150 rdf:type schema:DefinedTerm
151 Nf46ab211969c4b79a8a0ea83e11d72c8 schema:name dimensions_id
152 schema:value pub.1030735081
153 rdf:type schema:PropertyValue
154 Nf8e7b130a373411a8b30ce34d1d06859 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Adult
156 rdf:type schema:DefinedTerm
157 Nfe6a650fbc954e5caab0d4b4e5cd9cea rdf:first sg:person.010277610251.53
158 rdf:rest rdf:nil
159 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
160 schema:name Medical and Health Sciences
161 rdf:type schema:DefinedTerm
162 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
163 schema:name Public Health and Health Services
164 rdf:type schema:DefinedTerm
165 sg:journal.1319730 schema:issn 1432-1025
166 1439-6319
167 schema:name European Journal of Applied Physiology
168 schema:publisher Springer Nature
169 rdf:type schema:Periodical
170 sg:person.010277610251.53 schema:affiliation grid-institutes:grid.264756.4
171 schema:familyName Nakamura
172 schema:givenName E.
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010277610251.53
174 rdf:type schema:Person
175 sg:person.0662764543.21 schema:affiliation grid-institutes:grid.264756.4
176 schema:familyName Berry
177 schema:givenName M. J.
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0662764543.21
179 rdf:type schema:Person
180 sg:person.0731077743.85 schema:affiliation grid-institutes:grid.264756.4
181 schema:familyName Bacharach
182 schema:givenName D. W.
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731077743.85
184 rdf:type schema:Person
185 sg:person.0777143456.28 schema:affiliation grid-institutes:grid.264756.4
186 schema:familyName Moritani
187 schema:givenName T.
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777143456.28
189 rdf:type schema:Person
190 sg:pub.10.1007/bf00421757 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015965663
191 https://doi.org/10.1007/bf00421757
192 rdf:type schema:CreativeWork
193 sg:pub.10.1007/bf00429025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031319278
194 https://doi.org/10.1007/bf00429025
195 rdf:type schema:CreativeWork
196 grid-institutes:grid.264756.4 schema:alternateName Department of Health and Physical Education, Texas A & M University, 77843, College Station, Texas, USA
197 schema:name Department of Health and Physical Education, Texas A & M University, 77843, College Station, Texas, USA
198 Human Performance Laboratory, Hoken-taiku, Kyoto University, Sakyo-ku, 606, Kyoto, Japan
199 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...