The motion of major planets from observations 1769–1988 and some astronomical constants View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1993-01

AUTHORS

G. A. Krasinsky, E. V. Pitjeva, M. L. Sveshnikov, L. I. Chunayeva

ABSTRACT

Modern planetary theories may be considered as a realisation of a four-dimensional dynamical reference frame. The existence of secular trends between the dynamical system and the adopted system of the Fundamental Catalogue (as well as between time scales involved) has been studied by discussing planetary observations of different types and by comparison with a numerical theory constructed for the time span 1769–1988. Parameters of the theory were fitted to radar ranging data for 1961–1988 for inner planets and to meridian observations of 18th–20th centuries for outer planets. Then a set of the inner planet optical observations, which includes USNO meridian observations, transits through the solar disk and occultations of fundamental stars are discussed. The main results are the following:Radar data were used to estimate the time derivativeĠ of the gravitational constantG (in another interpretation, the secular trend between the atomic and dynamic time scales):\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\dot G/G = (0.37 \pm 0.45) \times 10^{ - 11} /y.$$ \end{document} This estimation, being statistically insignificant, gives some physically meaningful restriction toĠ.From the same data a new estimation of relativistic effects in the motion of Mercury was obtained, which has confirmed the Einstein value of the perihelion advance with the error 0″.06/cy. So in the frame of Einstein's theory the value of solar dynamic oblateness cannot be larger than 2×10−6.The analysis of time behavior of residuals in the inner planet longitudes shows secular trends. It is demonstrated that these trends may be explained by combined action of a linear trenddT of Brouwer's time scale (which is adopted as a standard for reduction of observations before 1959) and the error in Newcomb's value of the constant of precession. From USNO meridian observations fordT the following estimate was obtained:dT=−14.5±2.1 sec/cy with the corresponding correction,dp, to Newcomb's precessiondp=0″.46±0″.13/cy. The estimate ofdT is in good agreement with the value ofdT determined from transits of Mercury and Venus through the solar diskdT=−12.9±1.3 sec/cy which does not depend on any precession error.As a by-product, new accurate ephemerides of the outer planets are obtained over the time interval 1769–1988, the average residuals being presented. More... »

PAGES

1-23

References to SciGraph publications

  • 1982-02. Dynamical equinox and analytical theory of the Sun in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1980-08. On the determination of the equinox and equator of the new fundamental reference coordinate system, the FK5 in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf00694392

    DOI

    http://dx.doi.org/10.1007/bf00694392

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1007150914


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute for Appl. Astronomy, Academy of Science of the U.S.S.R., 8 Zdanov St., SU-197042, Leningrad, Russia", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Institute for Appl. Astronomy, Academy of Science of the U.S.S.R., 8 Zdanov St., SU-197042, Leningrad, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Krasinsky", 
            "givenName": "G. A.", 
            "id": "sg:person.011040560377.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011040560377.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Appl. Astronomy, Academy of Science of the U.S.S.R., 8 Zdanov St., SU-197042, Leningrad, Russia", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Institute for Appl. Astronomy, Academy of Science of the U.S.S.R., 8 Zdanov St., SU-197042, Leningrad, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pitjeva", 
            "givenName": "E. V.", 
            "id": "sg:person.013216713261.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013216713261.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Theoretical Astronomy, Academy of Science of the U.S.S.R., 10 Kutuzov Quay, SU-192187, Leningrad, Russia", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Institute for Theoretical Astronomy, Academy of Science of the U.S.S.R., 10 Kutuzov Quay, SU-192187, Leningrad, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sveshnikov", 
            "givenName": "M. L.", 
            "id": "sg:person.011257114747.72", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011257114747.72"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Theoretical Astronomy, Academy of Science of the U.S.S.R., 10 Kutuzov Quay, SU-192187, Leningrad, Russia", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Institute for Theoretical Astronomy, Academy of Science of the U.S.S.R., 10 Kutuzov Quay, SU-192187, Leningrad, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chunayeva", 
            "givenName": "L. I.", 
            "id": "sg:person.015014174361.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015014174361.84"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01228796", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009989178", 
              "https://doi.org/10.1007/bf01228796"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01230881", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043073404", 
              "https://doi.org/10.1007/bf01230881"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1993-01", 
        "datePublishedReg": "1993-01-01", 
        "description": "Modern planetary theories may be considered as a realisation of a four-dimensional dynamical reference frame. The existence of secular trends between the dynamical system and the adopted system of the Fundamental Catalogue (as well as between time scales involved) has been studied by discussing planetary observations of different types and by comparison with a numerical theory constructed for the time span 1769\u20131988. Parameters of the theory were fitted to radar ranging data for 1961\u20131988 for inner planets and to meridian observations of 18th\u201320th centuries for outer planets. Then a set of the inner planet optical observations, which includes USNO meridian observations, transits through the solar disk and occultations of fundamental stars are discussed. The main results are the following:Radar data were used to estimate the time derivative\u0120 of the gravitational constantG (in another interpretation, the secular trend between the atomic and dynamic time scales):\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$\\dot G/G = (0.37 \\pm 0.45) \\times 10^{ - 11} /y.$$\n\\end{document} This estimation, being statistically insignificant, gives some physically meaningful restriction to\u0120.From the same data a new estimation of relativistic effects in the motion of Mercury was obtained, which has confirmed the Einstein value of the perihelion advance with the error 0\u2033.06/cy. So in the frame of Einstein's theory the value of solar dynamic oblateness cannot be larger than 2\u00d710\u22126.The analysis of time behavior of residuals in the inner planet longitudes shows secular trends. It is demonstrated that these trends may be explained by combined action of a linear trenddT of Brouwer's time scale (which is adopted as a standard for reduction of observations before 1959) and the error in Newcomb's value of the constant of precession. From USNO meridian observations fordT the following estimate was obtained:dT=\u221214.5\u00b12.1 sec/cy with the corresponding correction,dp, to Newcomb's precessiondp=0\u2033.46\u00b10\u2033.13/cy. The estimate ofdT is in good agreement with the value ofdT determined from transits of Mercury and Venus through the solar diskdT=\u221212.9\u00b11.3 sec/cy which does not depend on any precession error.As a by-product, new accurate ephemerides of the outer planets are obtained over the time interval 1769\u20131988, the average residuals being presented.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf00694392", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136436", 
            "issn": [
              "0923-2958", 
              "1572-9478"
            ], 
            "name": "Celestial Mechanics and Dynamical Astronomy", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "55"
          }
        ], 
        "keywords": [
          "outer planets", 
          "meridian observations", 
          "constant of precession", 
          "dynamical reference frame", 
          "motion of Mercury", 
          "transit of Mercury", 
          "gravitational constantG", 
          "inner planets", 
          "time scales", 
          "optical observations", 
          "perihelion advance", 
          "fundamental catalogue", 
          "planetary observations", 
          "solar disk", 
          "relativistic effects", 
          "fundamental stars", 
          "major planets", 
          "Einstein's theory", 
          "accurate ephemerides", 
          "astronomical constants", 
          "Einstein value", 
          "dynamical systems", 
          "planets", 
          "planetary theory", 
          "numerical theory", 
          "time behavior", 
          "good agreement", 
          "dynamic oblateness", 
          "new estimation", 
          "reference frame", 
          "theory", 
          "stars", 
          "average residuals", 
          "main results", 
          "occultation", 
          "precession", 
          "Venus", 
          "motion", 
          "ephemeris", 
          "constantg", 
          "constants", 
          "estimation", 
          "error", 
          "oblateness", 
          "residuals", 
          "catalogue", 
          "longitude", 
          "same data", 
          "radar data", 
          "disk", 
          "agreement", 
          "correction", 
          "existence", 
          "system", 
          "radar", 
          "mercury", 
          "parameters", 
          "estimates", 
          "set", 
          "observations", 
          "values", 
          "Newcomb", 
          "frame", 
          "different types", 
          "realisation", 
          "transit", 
          "data", 
          "scale", 
          "behavior", 
          "results", 
          "comparison", 
          "effect", 
          "analysis", 
          "types", 
          "advances", 
          "Cys", 
          "trends", 
          "DP", 
          "action", 
          "products", 
          "secular trends", 
          "century"
        ], 
        "name": "The motion of major planets from observations 1769\u20131988 and some astronomical constants", 
        "pagination": "1-23", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1007150914"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf00694392"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf00694392", 
          "https://app.dimensions.ai/details/publication/pub.1007150914"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:18", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_219.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf00694392"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00694392'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00694392'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00694392'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00694392'


     

    This table displays all metadata directly associated to this object as RDF triples.

    171 TRIPLES      22 PREDICATES      110 URIs      100 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf00694392 schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 schema:author Na10d601db75a43f3af35e9a01da86d76
    4 schema:citation sg:pub.10.1007/bf01228796
    5 sg:pub.10.1007/bf01230881
    6 schema:datePublished 1993-01
    7 schema:datePublishedReg 1993-01-01
    8 schema:description Modern planetary theories may be considered as a realisation of a four-dimensional dynamical reference frame. The existence of secular trends between the dynamical system and the adopted system of the Fundamental Catalogue (as well as between time scales involved) has been studied by discussing planetary observations of different types and by comparison with a numerical theory constructed for the time span 1769–1988. Parameters of the theory were fitted to radar ranging data for 1961–1988 for inner planets and to meridian observations of 18th–20th centuries for outer planets. Then a set of the inner planet optical observations, which includes USNO meridian observations, transits through the solar disk and occultations of fundamental stars are discussed. The main results are the following:Radar data were used to estimate the time derivativeĠ of the gravitational constantG (in another interpretation, the secular trend between the atomic and dynamic time scales):\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\dot G/G = (0.37 \pm 0.45) \times 10^{ - 11} /y.$$ \end{document} This estimation, being statistically insignificant, gives some physically meaningful restriction toĠ.From the same data a new estimation of relativistic effects in the motion of Mercury was obtained, which has confirmed the Einstein value of the perihelion advance with the error 0″.06/cy. So in the frame of Einstein's theory the value of solar dynamic oblateness cannot be larger than 2×10−6.The analysis of time behavior of residuals in the inner planet longitudes shows secular trends. It is demonstrated that these trends may be explained by combined action of a linear trenddT of Brouwer's time scale (which is adopted as a standard for reduction of observations before 1959) and the error in Newcomb's value of the constant of precession. From USNO meridian observations fordT the following estimate was obtained:dT=−14.5±2.1 sec/cy with the corresponding correction,dp, to Newcomb's precessiondp=0″.46±0″.13/cy. The estimate ofdT is in good agreement with the value ofdT determined from transits of Mercury and Venus through the solar diskdT=−12.9±1.3 sec/cy which does not depend on any precession error.As a by-product, new accurate ephemerides of the outer planets are obtained over the time interval 1769–1988, the average residuals being presented.
    9 schema:genre article
    10 schema:inLanguage en
    11 schema:isAccessibleForFree false
    12 schema:isPartOf N61edce6cf7ca42e2b52ea5cffd59d7b0
    13 N711ce9c6fea34528ae4fdc020abda8ac
    14 sg:journal.1136436
    15 schema:keywords Cys
    16 DP
    17 Einstein value
    18 Einstein's theory
    19 Newcomb
    20 Venus
    21 accurate ephemerides
    22 action
    23 advances
    24 agreement
    25 analysis
    26 astronomical constants
    27 average residuals
    28 behavior
    29 catalogue
    30 century
    31 comparison
    32 constant of precession
    33 constantg
    34 constants
    35 correction
    36 data
    37 different types
    38 disk
    39 dynamic oblateness
    40 dynamical reference frame
    41 dynamical systems
    42 effect
    43 ephemeris
    44 error
    45 estimates
    46 estimation
    47 existence
    48 frame
    49 fundamental catalogue
    50 fundamental stars
    51 good agreement
    52 gravitational constantG
    53 inner planets
    54 longitude
    55 main results
    56 major planets
    57 mercury
    58 meridian observations
    59 motion
    60 motion of Mercury
    61 new estimation
    62 numerical theory
    63 oblateness
    64 observations
    65 occultation
    66 optical observations
    67 outer planets
    68 parameters
    69 perihelion advance
    70 planetary observations
    71 planetary theory
    72 planets
    73 precession
    74 products
    75 radar
    76 radar data
    77 realisation
    78 reference frame
    79 relativistic effects
    80 residuals
    81 results
    82 same data
    83 scale
    84 secular trends
    85 set
    86 solar disk
    87 stars
    88 system
    89 theory
    90 time behavior
    91 time scales
    92 transit
    93 transit of Mercury
    94 trends
    95 types
    96 values
    97 schema:name The motion of major planets from observations 1769–1988 and some astronomical constants
    98 schema:pagination 1-23
    99 schema:productId N79972e93d76c4363a9bd7159b0a6104a
    100 Nd5e4f5e28bdc4567b6e221050d89e243
    101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007150914
    102 https://doi.org/10.1007/bf00694392
    103 schema:sdDatePublished 2022-05-20T07:18
    104 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    105 schema:sdPublisher N334b833b9ce643e8ba528a3fd578041b
    106 schema:url https://doi.org/10.1007/bf00694392
    107 sgo:license sg:explorer/license/
    108 sgo:sdDataset articles
    109 rdf:type schema:ScholarlyArticle
    110 N334b833b9ce643e8ba528a3fd578041b schema:name Springer Nature - SN SciGraph project
    111 rdf:type schema:Organization
    112 N3ac654dfe17f4eca81b2e4342a8ade6c rdf:first sg:person.015014174361.84
    113 rdf:rest rdf:nil
    114 N61edce6cf7ca42e2b52ea5cffd59d7b0 schema:volumeNumber 55
    115 rdf:type schema:PublicationVolume
    116 N711ce9c6fea34528ae4fdc020abda8ac schema:issueNumber 1
    117 rdf:type schema:PublicationIssue
    118 N79972e93d76c4363a9bd7159b0a6104a schema:name dimensions_id
    119 schema:value pub.1007150914
    120 rdf:type schema:PropertyValue
    121 N9116f2cca072445587fe749b0b35d6af rdf:first sg:person.011257114747.72
    122 rdf:rest N3ac654dfe17f4eca81b2e4342a8ade6c
    123 N96764a249b124ec399c808872db9f00d rdf:first sg:person.013216713261.08
    124 rdf:rest N9116f2cca072445587fe749b0b35d6af
    125 Na10d601db75a43f3af35e9a01da86d76 rdf:first sg:person.011040560377.45
    126 rdf:rest N96764a249b124ec399c808872db9f00d
    127 Nd5e4f5e28bdc4567b6e221050d89e243 schema:name doi
    128 schema:value 10.1007/bf00694392
    129 rdf:type schema:PropertyValue
    130 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    131 schema:name Mathematical Sciences
    132 rdf:type schema:DefinedTerm
    133 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    134 schema:name Applied Mathematics
    135 rdf:type schema:DefinedTerm
    136 sg:journal.1136436 schema:issn 0923-2958
    137 1572-9478
    138 schema:name Celestial Mechanics and Dynamical Astronomy
    139 schema:publisher Springer Nature
    140 rdf:type schema:Periodical
    141 sg:person.011040560377.45 schema:affiliation grid-institutes:None
    142 schema:familyName Krasinsky
    143 schema:givenName G. A.
    144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011040560377.45
    145 rdf:type schema:Person
    146 sg:person.011257114747.72 schema:affiliation grid-institutes:None
    147 schema:familyName Sveshnikov
    148 schema:givenName M. L.
    149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011257114747.72
    150 rdf:type schema:Person
    151 sg:person.013216713261.08 schema:affiliation grid-institutes:None
    152 schema:familyName Pitjeva
    153 schema:givenName E. V.
    154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013216713261.08
    155 rdf:type schema:Person
    156 sg:person.015014174361.84 schema:affiliation grid-institutes:None
    157 schema:familyName Chunayeva
    158 schema:givenName L. I.
    159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015014174361.84
    160 rdf:type schema:Person
    161 sg:pub.10.1007/bf01228796 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009989178
    162 https://doi.org/10.1007/bf01228796
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1007/bf01230881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043073404
    165 https://doi.org/10.1007/bf01230881
    166 rdf:type schema:CreativeWork
    167 grid-institutes:None schema:alternateName Institute for Appl. Astronomy, Academy of Science of the U.S.S.R., 8 Zdanov St., SU-197042, Leningrad, Russia
    168 Institute for Theoretical Astronomy, Academy of Science of the U.S.S.R., 10 Kutuzov Quay, SU-192187, Leningrad, Russia
    169 schema:name Institute for Appl. Astronomy, Academy of Science of the U.S.S.R., 8 Zdanov St., SU-197042, Leningrad, Russia
    170 Institute for Theoretical Astronomy, Academy of Science of the U.S.S.R., 10 Kutuzov Quay, SU-192187, Leningrad, Russia
    171 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...