Ontology type: schema:ScholarlyArticle
1993-01
AUTHORSG. A. Krasinsky, E. V. Pitjeva, M. L. Sveshnikov, L. I. Chunayeva
ABSTRACTModern planetary theories may be considered as a realisation of a four-dimensional dynamical reference frame. The existence of secular trends between the dynamical system and the adopted system of the Fundamental Catalogue (as well as between time scales involved) has been studied by discussing planetary observations of different types and by comparison with a numerical theory constructed for the time span 1769–1988. Parameters of the theory were fitted to radar ranging data for 1961–1988 for inner planets and to meridian observations of 18th–20th centuries for outer planets. Then a set of the inner planet optical observations, which includes USNO meridian observations, transits through the solar disk and occultations of fundamental stars are discussed. The main results are the following:Radar data were used to estimate the time derivativeĠ of the gravitational constantG (in another interpretation, the secular trend between the atomic and dynamic time scales):\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\dot G/G = (0.37 \pm 0.45) \times 10^{ - 11} /y.$$ \end{document} This estimation, being statistically insignificant, gives some physically meaningful restriction toĠ.From the same data a new estimation of relativistic effects in the motion of Mercury was obtained, which has confirmed the Einstein value of the perihelion advance with the error 0″.06/cy. So in the frame of Einstein's theory the value of solar dynamic oblateness cannot be larger than 2×10−6.The analysis of time behavior of residuals in the inner planet longitudes shows secular trends. It is demonstrated that these trends may be explained by combined action of a linear trenddT of Brouwer's time scale (which is adopted as a standard for reduction of observations before 1959) and the error in Newcomb's value of the constant of precession. From USNO meridian observations fordT the following estimate was obtained:dT=−14.5±2.1 sec/cy with the corresponding correction,dp, to Newcomb's precessiondp=0″.46±0″.13/cy. The estimate ofdT is in good agreement with the value ofdT determined from transits of Mercury and Venus through the solar diskdT=−12.9±1.3 sec/cy which does not depend on any precession error.As a by-product, new accurate ephemerides of the outer planets are obtained over the time interval 1769–1988, the average residuals being presented. More... »
PAGES1-23
http://scigraph.springernature.com/pub.10.1007/bf00694392
DOIhttp://dx.doi.org/10.1007/bf00694392
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1007150914
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Applied Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Institute for Appl. Astronomy, Academy of Science of the U.S.S.R., 8 Zdanov St., SU-197042, Leningrad, Russia",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Institute for Appl. Astronomy, Academy of Science of the U.S.S.R., 8 Zdanov St., SU-197042, Leningrad, Russia"
],
"type": "Organization"
},
"familyName": "Krasinsky",
"givenName": "G. A.",
"id": "sg:person.011040560377.45",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011040560377.45"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute for Appl. Astronomy, Academy of Science of the U.S.S.R., 8 Zdanov St., SU-197042, Leningrad, Russia",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Institute for Appl. Astronomy, Academy of Science of the U.S.S.R., 8 Zdanov St., SU-197042, Leningrad, Russia"
],
"type": "Organization"
},
"familyName": "Pitjeva",
"givenName": "E. V.",
"id": "sg:person.013216713261.08",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013216713261.08"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute for Theoretical Astronomy, Academy of Science of the U.S.S.R., 10 Kutuzov Quay, SU-192187, Leningrad, Russia",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Institute for Theoretical Astronomy, Academy of Science of the U.S.S.R., 10 Kutuzov Quay, SU-192187, Leningrad, Russia"
],
"type": "Organization"
},
"familyName": "Sveshnikov",
"givenName": "M. L.",
"id": "sg:person.011257114747.72",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011257114747.72"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute for Theoretical Astronomy, Academy of Science of the U.S.S.R., 10 Kutuzov Quay, SU-192187, Leningrad, Russia",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Institute for Theoretical Astronomy, Academy of Science of the U.S.S.R., 10 Kutuzov Quay, SU-192187, Leningrad, Russia"
],
"type": "Organization"
},
"familyName": "Chunayeva",
"givenName": "L. I.",
"id": "sg:person.015014174361.84",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015014174361.84"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf01228796",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009989178",
"https://doi.org/10.1007/bf01228796"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01230881",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043073404",
"https://doi.org/10.1007/bf01230881"
],
"type": "CreativeWork"
}
],
"datePublished": "1993-01",
"datePublishedReg": "1993-01-01",
"description": "Modern planetary theories may be considered as a realisation of a four-dimensional dynamical reference frame. The existence of secular trends between the dynamical system and the adopted system of the Fundamental Catalogue (as well as between time scales involved) has been studied by discussing planetary observations of different types and by comparison with a numerical theory constructed for the time span 1769\u20131988. Parameters of the theory were fitted to radar ranging data for 1961\u20131988 for inner planets and to meridian observations of 18th\u201320th centuries for outer planets. Then a set of the inner planet optical observations, which includes USNO meridian observations, transits through the solar disk and occultations of fundamental stars are discussed. The main results are the following:Radar data were used to estimate the time derivative\u0120 of the gravitational constantG (in another interpretation, the secular trend between the atomic and dynamic time scales):\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$\\dot G/G = (0.37 \\pm 0.45) \\times 10^{ - 11} /y.$$\n\\end{document} This estimation, being statistically insignificant, gives some physically meaningful restriction to\u0120.From the same data a new estimation of relativistic effects in the motion of Mercury was obtained, which has confirmed the Einstein value of the perihelion advance with the error 0\u2033.06/cy. So in the frame of Einstein's theory the value of solar dynamic oblateness cannot be larger than 2\u00d710\u22126.The analysis of time behavior of residuals in the inner planet longitudes shows secular trends. It is demonstrated that these trends may be explained by combined action of a linear trenddT of Brouwer's time scale (which is adopted as a standard for reduction of observations before 1959) and the error in Newcomb's value of the constant of precession. From USNO meridian observations fordT the following estimate was obtained:dT=\u221214.5\u00b12.1 sec/cy with the corresponding correction,dp, to Newcomb's precessiondp=0\u2033.46\u00b10\u2033.13/cy. The estimate ofdT is in good agreement with the value ofdT determined from transits of Mercury and Venus through the solar diskdT=\u221212.9\u00b11.3 sec/cy which does not depend on any precession error.As a by-product, new accurate ephemerides of the outer planets are obtained over the time interval 1769\u20131988, the average residuals being presented.",
"genre": "article",
"id": "sg:pub.10.1007/bf00694392",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136436",
"issn": [
"0923-2958",
"1572-9478"
],
"name": "Celestial Mechanics and Dynamical Astronomy",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "55"
}
],
"keywords": [
"outer planets",
"meridian observations",
"constant of precession",
"dynamical reference frame",
"motion of Mercury",
"transit of Mercury",
"gravitational constantG",
"inner planets",
"time scales",
"optical observations",
"perihelion advance",
"fundamental catalogue",
"planetary observations",
"solar disk",
"relativistic effects",
"fundamental stars",
"major planets",
"Einstein's theory",
"accurate ephemerides",
"astronomical constants",
"Einstein value",
"dynamical systems",
"planets",
"planetary theory",
"numerical theory",
"time behavior",
"good agreement",
"dynamic oblateness",
"new estimation",
"reference frame",
"theory",
"stars",
"average residuals",
"main results",
"occultation",
"precession",
"Venus",
"motion",
"ephemeris",
"constantg",
"constants",
"estimation",
"error",
"oblateness",
"residuals",
"catalogue",
"longitude",
"same data",
"radar data",
"disk",
"agreement",
"correction",
"existence",
"system",
"radar",
"mercury",
"parameters",
"estimates",
"set",
"observations",
"values",
"Newcomb",
"frame",
"different types",
"realisation",
"transit",
"data",
"scale",
"behavior",
"results",
"comparison",
"effect",
"analysis",
"types",
"advances",
"Cys",
"trends",
"DP",
"action",
"products",
"secular trends",
"century"
],
"name": "The motion of major planets from observations 1769\u20131988 and some astronomical constants",
"pagination": "1-23",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1007150914"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/bf00694392"
]
}
],
"sameAs": [
"https://doi.org/10.1007/bf00694392",
"https://app.dimensions.ai/details/publication/pub.1007150914"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:18",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_219.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/bf00694392"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00694392'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00694392'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00694392'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00694392'
This table displays all metadata directly associated to this object as RDF triples.
171 TRIPLES
22 PREDICATES
110 URIs
100 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/bf00694392 | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0102 |
3 | ″ | schema:author | Na10d601db75a43f3af35e9a01da86d76 |
4 | ″ | schema:citation | sg:pub.10.1007/bf01228796 |
5 | ″ | ″ | sg:pub.10.1007/bf01230881 |
6 | ″ | schema:datePublished | 1993-01 |
7 | ″ | schema:datePublishedReg | 1993-01-01 |
8 | ″ | schema:description | Modern planetary theories may be considered as a realisation of a four-dimensional dynamical reference frame. The existence of secular trends between the dynamical system and the adopted system of the Fundamental Catalogue (as well as between time scales involved) has been studied by discussing planetary observations of different types and by comparison with a numerical theory constructed for the time span 1769–1988. Parameters of the theory were fitted to radar ranging data for 1961–1988 for inner planets and to meridian observations of 18th–20th centuries for outer planets. Then a set of the inner planet optical observations, which includes USNO meridian observations, transits through the solar disk and occultations of fundamental stars are discussed. The main results are the following:Radar data were used to estimate the time derivativeĠ of the gravitational constantG (in another interpretation, the secular trend between the atomic and dynamic time scales):\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\dot G/G = (0.37 \pm 0.45) \times 10^{ - 11} /y.$$ \end{document} This estimation, being statistically insignificant, gives some physically meaningful restriction toĠ.From the same data a new estimation of relativistic effects in the motion of Mercury was obtained, which has confirmed the Einstein value of the perihelion advance with the error 0″.06/cy. So in the frame of Einstein's theory the value of solar dynamic oblateness cannot be larger than 2×10−6.The analysis of time behavior of residuals in the inner planet longitudes shows secular trends. It is demonstrated that these trends may be explained by combined action of a linear trenddT of Brouwer's time scale (which is adopted as a standard for reduction of observations before 1959) and the error in Newcomb's value of the constant of precession. From USNO meridian observations fordT the following estimate was obtained:dT=−14.5±2.1 sec/cy with the corresponding correction,dp, to Newcomb's precessiondp=0″.46±0″.13/cy. The estimate ofdT is in good agreement with the value ofdT determined from transits of Mercury and Venus through the solar diskdT=−12.9±1.3 sec/cy which does not depend on any precession error.As a by-product, new accurate ephemerides of the outer planets are obtained over the time interval 1769–1988, the average residuals being presented. |
9 | ″ | schema:genre | article |
10 | ″ | schema:inLanguage | en |
11 | ″ | schema:isAccessibleForFree | false |
12 | ″ | schema:isPartOf | N61edce6cf7ca42e2b52ea5cffd59d7b0 |
13 | ″ | ″ | N711ce9c6fea34528ae4fdc020abda8ac |
14 | ″ | ″ | sg:journal.1136436 |
15 | ″ | schema:keywords | Cys |
16 | ″ | ″ | DP |
17 | ″ | ″ | Einstein value |
18 | ″ | ″ | Einstein's theory |
19 | ″ | ″ | Newcomb |
20 | ″ | ″ | Venus |
21 | ″ | ″ | accurate ephemerides |
22 | ″ | ″ | action |
23 | ″ | ″ | advances |
24 | ″ | ″ | agreement |
25 | ″ | ″ | analysis |
26 | ″ | ″ | astronomical constants |
27 | ″ | ″ | average residuals |
28 | ″ | ″ | behavior |
29 | ″ | ″ | catalogue |
30 | ″ | ″ | century |
31 | ″ | ″ | comparison |
32 | ″ | ″ | constant of precession |
33 | ″ | ″ | constantg |
34 | ″ | ″ | constants |
35 | ″ | ″ | correction |
36 | ″ | ″ | data |
37 | ″ | ″ | different types |
38 | ″ | ″ | disk |
39 | ″ | ″ | dynamic oblateness |
40 | ″ | ″ | dynamical reference frame |
41 | ″ | ″ | dynamical systems |
42 | ″ | ″ | effect |
43 | ″ | ″ | ephemeris |
44 | ″ | ″ | error |
45 | ″ | ″ | estimates |
46 | ″ | ″ | estimation |
47 | ″ | ″ | existence |
48 | ″ | ″ | frame |
49 | ″ | ″ | fundamental catalogue |
50 | ″ | ″ | fundamental stars |
51 | ″ | ″ | good agreement |
52 | ″ | ″ | gravitational constantG |
53 | ″ | ″ | inner planets |
54 | ″ | ″ | longitude |
55 | ″ | ″ | main results |
56 | ″ | ″ | major planets |
57 | ″ | ″ | mercury |
58 | ″ | ″ | meridian observations |
59 | ″ | ″ | motion |
60 | ″ | ″ | motion of Mercury |
61 | ″ | ″ | new estimation |
62 | ″ | ″ | numerical theory |
63 | ″ | ″ | oblateness |
64 | ″ | ″ | observations |
65 | ″ | ″ | occultation |
66 | ″ | ″ | optical observations |
67 | ″ | ″ | outer planets |
68 | ″ | ″ | parameters |
69 | ″ | ″ | perihelion advance |
70 | ″ | ″ | planetary observations |
71 | ″ | ″ | planetary theory |
72 | ″ | ″ | planets |
73 | ″ | ″ | precession |
74 | ″ | ″ | products |
75 | ″ | ″ | radar |
76 | ″ | ″ | radar data |
77 | ″ | ″ | realisation |
78 | ″ | ″ | reference frame |
79 | ″ | ″ | relativistic effects |
80 | ″ | ″ | residuals |
81 | ″ | ″ | results |
82 | ″ | ″ | same data |
83 | ″ | ″ | scale |
84 | ″ | ″ | secular trends |
85 | ″ | ″ | set |
86 | ″ | ″ | solar disk |
87 | ″ | ″ | stars |
88 | ″ | ″ | system |
89 | ″ | ″ | theory |
90 | ″ | ″ | time behavior |
91 | ″ | ″ | time scales |
92 | ″ | ″ | transit |
93 | ″ | ″ | transit of Mercury |
94 | ″ | ″ | trends |
95 | ″ | ″ | types |
96 | ″ | ″ | values |
97 | ″ | schema:name | The motion of major planets from observations 1769–1988 and some astronomical constants |
98 | ″ | schema:pagination | 1-23 |
99 | ″ | schema:productId | N79972e93d76c4363a9bd7159b0a6104a |
100 | ″ | ″ | Nd5e4f5e28bdc4567b6e221050d89e243 |
101 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1007150914 |
102 | ″ | ″ | https://doi.org/10.1007/bf00694392 |
103 | ″ | schema:sdDatePublished | 2022-05-20T07:18 |
104 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
105 | ″ | schema:sdPublisher | N334b833b9ce643e8ba528a3fd578041b |
106 | ″ | schema:url | https://doi.org/10.1007/bf00694392 |
107 | ″ | sgo:license | sg:explorer/license/ |
108 | ″ | sgo:sdDataset | articles |
109 | ″ | rdf:type | schema:ScholarlyArticle |
110 | N334b833b9ce643e8ba528a3fd578041b | schema:name | Springer Nature - SN SciGraph project |
111 | ″ | rdf:type | schema:Organization |
112 | N3ac654dfe17f4eca81b2e4342a8ade6c | rdf:first | sg:person.015014174361.84 |
113 | ″ | rdf:rest | rdf:nil |
114 | N61edce6cf7ca42e2b52ea5cffd59d7b0 | schema:volumeNumber | 55 |
115 | ″ | rdf:type | schema:PublicationVolume |
116 | N711ce9c6fea34528ae4fdc020abda8ac | schema:issueNumber | 1 |
117 | ″ | rdf:type | schema:PublicationIssue |
118 | N79972e93d76c4363a9bd7159b0a6104a | schema:name | dimensions_id |
119 | ″ | schema:value | pub.1007150914 |
120 | ″ | rdf:type | schema:PropertyValue |
121 | N9116f2cca072445587fe749b0b35d6af | rdf:first | sg:person.011257114747.72 |
122 | ″ | rdf:rest | N3ac654dfe17f4eca81b2e4342a8ade6c |
123 | N96764a249b124ec399c808872db9f00d | rdf:first | sg:person.013216713261.08 |
124 | ″ | rdf:rest | N9116f2cca072445587fe749b0b35d6af |
125 | Na10d601db75a43f3af35e9a01da86d76 | rdf:first | sg:person.011040560377.45 |
126 | ″ | rdf:rest | N96764a249b124ec399c808872db9f00d |
127 | Nd5e4f5e28bdc4567b6e221050d89e243 | schema:name | doi |
128 | ″ | schema:value | 10.1007/bf00694392 |
129 | ″ | rdf:type | schema:PropertyValue |
130 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
131 | ″ | schema:name | Mathematical Sciences |
132 | ″ | rdf:type | schema:DefinedTerm |
133 | anzsrc-for:0102 | schema:inDefinedTermSet | anzsrc-for: |
134 | ″ | schema:name | Applied Mathematics |
135 | ″ | rdf:type | schema:DefinedTerm |
136 | sg:journal.1136436 | schema:issn | 0923-2958 |
137 | ″ | ″ | 1572-9478 |
138 | ″ | schema:name | Celestial Mechanics and Dynamical Astronomy |
139 | ″ | schema:publisher | Springer Nature |
140 | ″ | rdf:type | schema:Periodical |
141 | sg:person.011040560377.45 | schema:affiliation | grid-institutes:None |
142 | ″ | schema:familyName | Krasinsky |
143 | ″ | schema:givenName | G. A. |
144 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011040560377.45 |
145 | ″ | rdf:type | schema:Person |
146 | sg:person.011257114747.72 | schema:affiliation | grid-institutes:None |
147 | ″ | schema:familyName | Sveshnikov |
148 | ″ | schema:givenName | M. L. |
149 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011257114747.72 |
150 | ″ | rdf:type | schema:Person |
151 | sg:person.013216713261.08 | schema:affiliation | grid-institutes:None |
152 | ″ | schema:familyName | Pitjeva |
153 | ″ | schema:givenName | E. V. |
154 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013216713261.08 |
155 | ″ | rdf:type | schema:Person |
156 | sg:person.015014174361.84 | schema:affiliation | grid-institutes:None |
157 | ″ | schema:familyName | Chunayeva |
158 | ″ | schema:givenName | L. I. |
159 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015014174361.84 |
160 | ″ | rdf:type | schema:Person |
161 | sg:pub.10.1007/bf01228796 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1009989178 |
162 | ″ | ″ | https://doi.org/10.1007/bf01228796 |
163 | ″ | rdf:type | schema:CreativeWork |
164 | sg:pub.10.1007/bf01230881 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1043073404 |
165 | ″ | ″ | https://doi.org/10.1007/bf01230881 |
166 | ″ | rdf:type | schema:CreativeWork |
167 | grid-institutes:None | schema:alternateName | Institute for Appl. Astronomy, Academy of Science of the U.S.S.R., 8 Zdanov St., SU-197042, Leningrad, Russia |
168 | ″ | ″ | Institute for Theoretical Astronomy, Academy of Science of the U.S.S.R., 10 Kutuzov Quay, SU-192187, Leningrad, Russia |
169 | ″ | schema:name | Institute for Appl. Astronomy, Academy of Science of the U.S.S.R., 8 Zdanov St., SU-197042, Leningrad, Russia |
170 | ″ | ″ | Institute for Theoretical Astronomy, Academy of Science of the U.S.S.R., 10 Kutuzov Quay, SU-192187, Leningrad, Russia |
171 | ″ | rdf:type | schema:Organization |