Optimization of doped silicon and germanium thermistors View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1993-11

AUTHORS

Dan McCammon, Wei Cui, Mike Juda, Jiahong Zhang, Richard Kelley, Harvey Moseley, Caroline Stahle, Andrew Szymkowiak

ABSTRACT

We have tested a variety of ion-implanted silicon thermistors and a much smaller selection of nuclear transmutation doped germanium devices over a wide range of temperatures and power densities. A small number of melt-doped silicon and germanium devices have also been tested, but these usually show evidence for small-scale doping inhomogeneities that make their behavior unpredictable and generally less desirable for cryogenic detectors. The behavior of the thermistors falls into fairly simple and predictable patterns. Many of these are not readily explained in terms of current theory, but empirical descriptions permit predictions of thermistor behavior and optimization of the design for best performance in a particular situation. Both silicon and germanium thermistors show strong non-ohmic effects that severely limit the performance of these devices at low temperatures. This most directly affects the maximum speed of detectors employing them, and appears to limit the response time of detectors operating at 100 mK to the order of 1 ms. We have also observed excess low-frequency noise in both types of thermistor that appears to be an intrinsic property of the bulk material, since it scales as the square root of the device volume. We have not yet determined how this noise varies with doping density or temperature, but it appears that this phenomenon has a significant effect on detector performance, and will need to be taken into account in an optimum design. The material for this talk was taken entirely from the following two papers: J. Zhang, W. Cui, M. Juda, D. McCammon, R. Kelley, H. Moseley, C. Stahle, and A. Szymkowiak, “Hopping Conduction in Partially Compensated Doped Silicon,” Phys. Rev.B48, 2312 (1993) J. Zhang, W. Cui, M. Juda, D. McCammon, R. Kelley, H. Moseley, C. Stahle, and A. Szymkowiak, “Non-Ohmic Effects in Hopping Conduction in Doped Silicon and Germanium: .05 – 1 Kelvin,” Phys. Rev.B (submitted) (1993/94) This research is supported by NASA grants NAG5-629 and NAG5-679. More... »

PAGES

287-287

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00693434

DOI

http://dx.doi.org/10.1007/bf00693434

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016334616


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Wisconsin\u2013Madison", 
          "id": "https://www.grid.ac/institutes/grid.14003.36", 
          "name": [
            "Physics Department, Univ. of Wisconsin, 53706, Madison, WI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McCammon", 
        "givenName": "Dan", 
        "id": "sg:person.010654162153.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010654162153.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Wisconsin\u2013Madison", 
          "id": "https://www.grid.ac/institutes/grid.14003.36", 
          "name": [
            "Physics Department, Univ. of Wisconsin, 53706, Madison, WI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cui", 
        "givenName": "Wei", 
        "id": "sg:person.015320343157.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015320343157.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Wisconsin\u2013Madison", 
          "id": "https://www.grid.ac/institutes/grid.14003.36", 
          "name": [
            "Physics Department, Univ. of Wisconsin, 53706, Madison, WI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Juda", 
        "givenName": "Mike", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Wisconsin\u2013Madison", 
          "id": "https://www.grid.ac/institutes/grid.14003.36", 
          "name": [
            "Physics Department, Univ. of Wisconsin, 53706, Madison, WI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Jiahong", 
        "id": "sg:person.016374443275.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016374443275.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Wisconsin\u2013Madison", 
          "id": "https://www.grid.ac/institutes/grid.14003.36", 
          "name": [
            "Physics Department, Univ. of Wisconsin, 53706, Madison, WI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kelley", 
        "givenName": "Richard", 
        "id": "sg:person.01010506121.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010506121.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Wisconsin\u2013Madison", 
          "id": "https://www.grid.ac/institutes/grid.14003.36", 
          "name": [
            "Physics Department, Univ. of Wisconsin, 53706, Madison, WI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moseley", 
        "givenName": "Harvey", 
        "id": "sg:person.015041376545.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015041376545.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Wisconsin\u2013Madison", 
          "id": "https://www.grid.ac/institutes/grid.14003.36", 
          "name": [
            "Physics Department, Univ. of Wisconsin, 53706, Madison, WI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stahle", 
        "givenName": "Caroline", 
        "id": "sg:person.013104371717.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013104371717.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Goddard Space Flight Center", 
          "id": "https://www.grid.ac/institutes/grid.133275.1", 
          "name": [
            "Physics Department, Univ. of Wisconsin, 53706, Madison, WI, USA", 
            "Code 666, NASA/Goddard Space Flight Center, 20771, Greenbelt, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Szymkowiak", 
        "givenName": "Andrew", 
        "id": "sg:person.011655043111.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011655043111.44"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1993-11", 
    "datePublishedReg": "1993-11-01", 
    "description": "We have tested a variety of ion-implanted silicon thermistors and a much smaller selection of nuclear transmutation doped germanium devices over a wide range of temperatures and power densities. A small number of melt-doped silicon and germanium devices have also been tested, but these usually show evidence for small-scale doping inhomogeneities that make their behavior unpredictable and generally less desirable for cryogenic detectors. The behavior of the thermistors falls into fairly simple and predictable patterns. Many of these are not readily explained in terms of current theory, but empirical descriptions permit predictions of thermistor behavior and optimization of the design for best performance in a particular situation. Both silicon and germanium thermistors show strong non-ohmic effects that severely limit the performance of these devices at low temperatures. This most directly affects the maximum speed of detectors employing them, and appears to limit the response time of detectors operating at 100 mK to the order of 1 ms. We have also observed excess low-frequency noise in both types of thermistor that appears to be an intrinsic property of the bulk material, since it scales as the square root of the device volume. We have not yet determined how this noise varies with doping density or temperature, but it appears that this phenomenon has a significant effect on detector performance, and will need to be taken into account in an optimum design. The material for this talk was taken entirely from the following two papers: J. Zhang, W. Cui, M. Juda, D. McCammon, R. Kelley, H. Moseley, C. Stahle, and A. Szymkowiak, \u201cHopping Conduction in Partially Compensated Doped Silicon,\u201d Phys. Rev.B48, 2312 (1993) J. Zhang, W. Cui, M. Juda, D. McCammon, R. Kelley, H. Moseley, C. Stahle, and A. Szymkowiak, \u201cNon-Ohmic Effects in Hopping Conduction in Doped Silicon and Germanium: .05 \u2013 1 Kelvin,\u201d Phys. Rev.B (submitted) (1993/94) This research is supported by NASA grants NAG5-629 and NAG5-679.", 
    "genre": "non_research_article", 
    "id": "sg:pub.10.1007/bf00693434", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1030474", 
        "issn": [
          "0022-2291", 
          "1573-7357"
        ], 
        "name": "Journal of Low Temperature Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "93"
      }
    ], 
    "name": "Optimization of doped silicon and germanium thermistors", 
    "pagination": "287-287", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00693434"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4dd4779cc1554845bb3cd35ccb374cbfba048046c2c413634c9cbac9c65ace8f"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016334616"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00693434", 
      "https://app.dimensions.ai/details/publication/pub.1016334616"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000375_0000000375/records_91450_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2FBF00693434"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00693434'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00693434'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00693434'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00693434'


 

This table displays all metadata directly associated to this object as RDF triples.

113 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00693434 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N33afd4e80d26423f9520cdd837165ca3
4 schema:datePublished 1993-11
5 schema:datePublishedReg 1993-11-01
6 schema:description We have tested a variety of ion-implanted silicon thermistors and a much smaller selection of nuclear transmutation doped germanium devices over a wide range of temperatures and power densities. A small number of melt-doped silicon and germanium devices have also been tested, but these usually show evidence for small-scale doping inhomogeneities that make their behavior unpredictable and generally less desirable for cryogenic detectors. The behavior of the thermistors falls into fairly simple and predictable patterns. Many of these are not readily explained in terms of current theory, but empirical descriptions permit predictions of thermistor behavior and optimization of the design for best performance in a particular situation. Both silicon and germanium thermistors show strong non-ohmic effects that severely limit the performance of these devices at low temperatures. This most directly affects the maximum speed of detectors employing them, and appears to limit the response time of detectors operating at 100 mK to the order of 1 ms. We have also observed excess low-frequency noise in both types of thermistor that appears to be an intrinsic property of the bulk material, since it scales as the square root of the device volume. We have not yet determined how this noise varies with doping density or temperature, but it appears that this phenomenon has a significant effect on detector performance, and will need to be taken into account in an optimum design. The material for this talk was taken entirely from the following two papers: J. Zhang, W. Cui, M. Juda, D. McCammon, R. Kelley, H. Moseley, C. Stahle, and A. Szymkowiak, “Hopping Conduction in Partially Compensated Doped Silicon,” Phys. Rev.B48, 2312 (1993) J. Zhang, W. Cui, M. Juda, D. McCammon, R. Kelley, H. Moseley, C. Stahle, and A. Szymkowiak, “Non-Ohmic Effects in Hopping Conduction in Doped Silicon and Germanium: .05 – 1 Kelvin,” Phys. Rev.B (submitted) (1993/94) This research is supported by NASA grants NAG5-629 and NAG5-679.
7 schema:genre non_research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N527ce52e20894fcfb25634b96685f662
11 Ne57f786903874a96a116faa441487b47
12 sg:journal.1030474
13 schema:name Optimization of doped silicon and germanium thermistors
14 schema:pagination 287-287
15 schema:productId N36209289ccd0474f9801824f9da37f70
16 N80daa2f9db3145439abba26918d46959
17 Nbe9297bdde1d4143987647082486e05e
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016334616
19 https://doi.org/10.1007/bf00693434
20 schema:sdDatePublished 2019-04-15T09:01
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N5d238d3564f04cfe9e2a01a0623aff98
23 schema:url http://link.springer.com/10.1007%2FBF00693434
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N1eb3132b2f1245a9a2a9afd1f389ccba rdf:first sg:person.01010506121.07
28 rdf:rest N711e85d08214421499305772738014ea
29 N33afd4e80d26423f9520cdd837165ca3 rdf:first sg:person.010654162153.02
30 rdf:rest N84264637f6ff49e9b17fd012466fe22f
31 N36209289ccd0474f9801824f9da37f70 schema:name doi
32 schema:value 10.1007/bf00693434
33 rdf:type schema:PropertyValue
34 N527ce52e20894fcfb25634b96685f662 schema:issueNumber 3-4
35 rdf:type schema:PublicationIssue
36 N5d238d3564f04cfe9e2a01a0623aff98 schema:name Springer Nature - SN SciGraph project
37 rdf:type schema:Organization
38 N711e85d08214421499305772738014ea rdf:first sg:person.015041376545.28
39 rdf:rest Nd8669141832a41699ad737ec8a39ec70
40 N7c317cc6e41d4ae19480b93e2158786c rdf:first N96ff2562b3b244f2a0fef64ed2b8906c
41 rdf:rest Nf063fe22c8b1412b982c4eeba9f48915
42 N80daa2f9db3145439abba26918d46959 schema:name readcube_id
43 schema:value 4dd4779cc1554845bb3cd35ccb374cbfba048046c2c413634c9cbac9c65ace8f
44 rdf:type schema:PropertyValue
45 N84264637f6ff49e9b17fd012466fe22f rdf:first sg:person.015320343157.23
46 rdf:rest N7c317cc6e41d4ae19480b93e2158786c
47 N96ff2562b3b244f2a0fef64ed2b8906c schema:affiliation https://www.grid.ac/institutes/grid.14003.36
48 schema:familyName Juda
49 schema:givenName Mike
50 rdf:type schema:Person
51 N984026b1648a444da25e75ad75087540 rdf:first sg:person.011655043111.44
52 rdf:rest rdf:nil
53 Nbe9297bdde1d4143987647082486e05e schema:name dimensions_id
54 schema:value pub.1016334616
55 rdf:type schema:PropertyValue
56 Nd8669141832a41699ad737ec8a39ec70 rdf:first sg:person.013104371717.11
57 rdf:rest N984026b1648a444da25e75ad75087540
58 Ne57f786903874a96a116faa441487b47 schema:volumeNumber 93
59 rdf:type schema:PublicationVolume
60 Nf063fe22c8b1412b982c4eeba9f48915 rdf:first sg:person.016374443275.34
61 rdf:rest N1eb3132b2f1245a9a2a9afd1f389ccba
62 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
63 schema:name Engineering
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
66 schema:name Materials Engineering
67 rdf:type schema:DefinedTerm
68 sg:journal.1030474 schema:issn 0022-2291
69 1573-7357
70 schema:name Journal of Low Temperature Physics
71 rdf:type schema:Periodical
72 sg:person.01010506121.07 schema:affiliation https://www.grid.ac/institutes/grid.14003.36
73 schema:familyName Kelley
74 schema:givenName Richard
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010506121.07
76 rdf:type schema:Person
77 sg:person.010654162153.02 schema:affiliation https://www.grid.ac/institutes/grid.14003.36
78 schema:familyName McCammon
79 schema:givenName Dan
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010654162153.02
81 rdf:type schema:Person
82 sg:person.011655043111.44 schema:affiliation https://www.grid.ac/institutes/grid.133275.1
83 schema:familyName Szymkowiak
84 schema:givenName Andrew
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011655043111.44
86 rdf:type schema:Person
87 sg:person.013104371717.11 schema:affiliation https://www.grid.ac/institutes/grid.14003.36
88 schema:familyName Stahle
89 schema:givenName Caroline
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013104371717.11
91 rdf:type schema:Person
92 sg:person.015041376545.28 schema:affiliation https://www.grid.ac/institutes/grid.14003.36
93 schema:familyName Moseley
94 schema:givenName Harvey
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015041376545.28
96 rdf:type schema:Person
97 sg:person.015320343157.23 schema:affiliation https://www.grid.ac/institutes/grid.14003.36
98 schema:familyName Cui
99 schema:givenName Wei
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015320343157.23
101 rdf:type schema:Person
102 sg:person.016374443275.34 schema:affiliation https://www.grid.ac/institutes/grid.14003.36
103 schema:familyName Zhang
104 schema:givenName Jiahong
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016374443275.34
106 rdf:type schema:Person
107 https://www.grid.ac/institutes/grid.133275.1 schema:alternateName Goddard Space Flight Center
108 schema:name Code 666, NASA/Goddard Space Flight Center, 20771, Greenbelt, MD, USA
109 Physics Department, Univ. of Wisconsin, 53706, Madison, WI, USA
110 rdf:type schema:Organization
111 https://www.grid.ac/institutes/grid.14003.36 schema:alternateName University of Wisconsin–Madison
112 schema:name Physics Department, Univ. of Wisconsin, 53706, Madison, WI, USA
113 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...