On the successive elimination of perturbation harmonics View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1993-02

AUTHORS

Alessandro Morbidelli

ABSTRACT

A practical method for the detailed exploration of two degrees of freedom dynamical systems is presented in this paper. This method is made up of several steps, in each of which we eliminate, via the introduction of suitable action-angle variables, the most relevant harmonic present in the Fourier expansion of the perturbation. In this way, at the end, one obtains a satisfactory description of the fine structure of secondary resonances, as well as detailed information about the size of chaotic layers and about the localization of regions filled up with invariant tori. More... »

PAGES

101-130

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00692424

DOI

http://dx.doi.org/10.1007/bf00692424

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048435857


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department de Math\u00e9matique FUNDP, 8, Rempart de la Vierge, B-5000, Namur, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Morbidelli", 
        "givenName": "Alessandro", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0375-9601(81)90144-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000395168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(81)90144-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000395168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00692425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004205105", 
          "https://doi.org/10.1007/bf00692425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00692425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004205105", 
          "https://doi.org/10.1007/bf00692425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(79)90023-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014649535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(79)90023-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014649535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00048581", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020701464", 
          "https://doi.org/10.1007/bf00048581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00048581", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020701464", 
          "https://doi.org/10.1007/bf00048581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0019-1035(90)90126-t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021104825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0019-1035(90)90126-t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021104825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/321607.321609", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041148884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0019-1035(92)90041-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041744142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0019-1035(92)90041-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041744142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01013171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045217896", 
          "https://doi.org/10.1007/bf01013171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00051201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046842398", 
          "https://doi.org/10.1007/bf00051201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00051201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046842398", 
          "https://doi.org/10.1007/bf00051201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0019-1035(89)90070-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051736917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0019-1035(89)90070-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051736917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00048607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053020427", 
          "https://doi.org/10.1007/bf00048607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00048607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053020427", 
          "https://doi.org/10.1007/bf00048607"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1993-02", 
    "datePublishedReg": "1993-02-01", 
    "description": "A practical method for the detailed exploration of two degrees of freedom dynamical systems is presented in this paper. This method is made up of several steps, in each of which we eliminate, via the introduction of suitable action-angle variables, the most relevant harmonic present in the Fourier expansion of the perturbation. In this way, at the end, one obtains a satisfactory description of the fine structure of secondary resonances, as well as detailed information about the size of chaotic layers and about the localization of regions filled up with invariant tori.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf00692424", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136436", 
        "issn": [
          "0008-8714", 
          "0923-2958"
        ], 
        "name": "Celestial Mechanics and Dynamical Astronomy", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "55"
      }
    ], 
    "name": "On the successive elimination of perturbation harmonics", 
    "pagination": "101-130", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00692424"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e6bd569421ec56ee021b2231f25d146b6a28ff710e86e6a88b64184b97f7c476"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048435857"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00692424", 
      "https://app.dimensions.ai/details/publication/pub.1048435857"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000375_0000000375/records_91447_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF00692424"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00692424'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00692424'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00692424'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00692424'


 

This table displays all metadata directly associated to this object as RDF triples.

97 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00692424 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Ndd157b2ea98e4f70bc20878cfb7129ff
4 schema:citation sg:pub.10.1007/bf00048581
5 sg:pub.10.1007/bf00048607
6 sg:pub.10.1007/bf00051201
7 sg:pub.10.1007/bf00692425
8 sg:pub.10.1007/bf01013171
9 https://doi.org/10.1016/0019-1035(89)90070-5
10 https://doi.org/10.1016/0019-1035(90)90126-t
11 https://doi.org/10.1016/0019-1035(92)90041-5
12 https://doi.org/10.1016/0370-1573(79)90023-1
13 https://doi.org/10.1016/0375-9601(81)90144-4
14 https://doi.org/10.1145/321607.321609
15 schema:datePublished 1993-02
16 schema:datePublishedReg 1993-02-01
17 schema:description A practical method for the detailed exploration of two degrees of freedom dynamical systems is presented in this paper. This method is made up of several steps, in each of which we eliminate, via the introduction of suitable action-angle variables, the most relevant harmonic present in the Fourier expansion of the perturbation. In this way, at the end, one obtains a satisfactory description of the fine structure of secondary resonances, as well as detailed information about the size of chaotic layers and about the localization of regions filled up with invariant tori.
18 schema:genre research_article
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf N5f7022037e4d422891b3071acea3a092
22 N74631fc7e0f144f381d6cd670d2495ff
23 sg:journal.1136436
24 schema:name On the successive elimination of perturbation harmonics
25 schema:pagination 101-130
26 schema:productId N44ddae5dcd3d4679ad87fc474d0afb1d
27 N9247175b234143f884f6613eeb50fcea
28 Ndecefb6035cb4af7b623812d9880d17a
29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048435857
30 https://doi.org/10.1007/bf00692424
31 schema:sdDatePublished 2019-04-15T09:01
32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
33 schema:sdPublisher N2ee92e6aad9c4355b97541f8626792e5
34 schema:url http://link.springer.com/10.1007/BF00692424
35 sgo:license sg:explorer/license/
36 sgo:sdDataset articles
37 rdf:type schema:ScholarlyArticle
38 N2ee92e6aad9c4355b97541f8626792e5 schema:name Springer Nature - SN SciGraph project
39 rdf:type schema:Organization
40 N44ddae5dcd3d4679ad87fc474d0afb1d schema:name readcube_id
41 schema:value e6bd569421ec56ee021b2231f25d146b6a28ff710e86e6a88b64184b97f7c476
42 rdf:type schema:PropertyValue
43 N5f7022037e4d422891b3071acea3a092 schema:volumeNumber 55
44 rdf:type schema:PublicationVolume
45 N74631fc7e0f144f381d6cd670d2495ff schema:issueNumber 2
46 rdf:type schema:PublicationIssue
47 N9247175b234143f884f6613eeb50fcea schema:name doi
48 schema:value 10.1007/bf00692424
49 rdf:type schema:PropertyValue
50 Na556307fa3ed405486466117fa8a0ae6 schema:name Department de Mathématique FUNDP, 8, Rempart de la Vierge, B-5000, Namur, Belgium
51 rdf:type schema:Organization
52 Nd8ed2a7bc80a48849f4a9d64a92dd0e3 schema:affiliation Na556307fa3ed405486466117fa8a0ae6
53 schema:familyName Morbidelli
54 schema:givenName Alessandro
55 rdf:type schema:Person
56 Ndd157b2ea98e4f70bc20878cfb7129ff rdf:first Nd8ed2a7bc80a48849f4a9d64a92dd0e3
57 rdf:rest rdf:nil
58 Ndecefb6035cb4af7b623812d9880d17a schema:name dimensions_id
59 schema:value pub.1048435857
60 rdf:type schema:PropertyValue
61 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
62 schema:name Mathematical Sciences
63 rdf:type schema:DefinedTerm
64 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
65 schema:name Pure Mathematics
66 rdf:type schema:DefinedTerm
67 sg:journal.1136436 schema:issn 0008-8714
68 0923-2958
69 schema:name Celestial Mechanics and Dynamical Astronomy
70 rdf:type schema:Periodical
71 sg:pub.10.1007/bf00048581 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020701464
72 https://doi.org/10.1007/bf00048581
73 rdf:type schema:CreativeWork
74 sg:pub.10.1007/bf00048607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053020427
75 https://doi.org/10.1007/bf00048607
76 rdf:type schema:CreativeWork
77 sg:pub.10.1007/bf00051201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046842398
78 https://doi.org/10.1007/bf00051201
79 rdf:type schema:CreativeWork
80 sg:pub.10.1007/bf00692425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004205105
81 https://doi.org/10.1007/bf00692425
82 rdf:type schema:CreativeWork
83 sg:pub.10.1007/bf01013171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045217896
84 https://doi.org/10.1007/bf01013171
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1016/0019-1035(89)90070-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051736917
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1016/0019-1035(90)90126-t schema:sameAs https://app.dimensions.ai/details/publication/pub.1021104825
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1016/0019-1035(92)90041-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041744142
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1016/0370-1573(79)90023-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014649535
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/0375-9601(81)90144-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000395168
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1145/321607.321609 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041148884
97 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...