Stability of the planetary three-body problem View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1995-07

AUTHORS

Jacques Laskar, Philippe Robutel

ABSTRACT

We present a direct method for the expansion of the planetary Hamiltonian in Poincaré canonical elliptic variables with its effective implementation in computer algebra. This method allows us to demonstrate the existence of simplifications occurring in the analytical expression of the Hamiltonian coefficients. All the coefficients depending on the ratio of the semi major axis can thus be expressed in a concise and canonical form. More... »

PAGES

193-217

References to SciGraph publications

  • 1995-07. Stability of the planetary three-body problem in CELESTIAL MECHANICS AND DYNAMICAL ASTRONOMY
  • 1989-03. A numerical experiment on the chaotic behaviour of the Solar System in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf00692088

    DOI

    http://dx.doi.org/10.1007/bf00692088

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1016401816


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Numerical and Computational Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "CNRS-Astronomie et Syst\u00e8mes Dynamiques, Bureau des Longitudes, 3 rue Mazarine, 75006, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Laskar", 
            "givenName": "Jacques", 
            "id": "sg:person.01142167464.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142167464.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "CNRS-Astronomie et Syst\u00e8mes Dynamiques, Bureau des Longitudes, 3 rue Mazarine, 75006, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Robutel", 
            "givenName": "Philippe", 
            "id": "sg:person.015026413031.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015026413031.40"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/338237a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015108153", 
              "https://doi.org/10.1038/338237a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/338237a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015108153", 
              "https://doi.org/10.1038/338237a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00692089", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016738552", 
              "https://doi.org/10.1007/bf00692089"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00692089", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016738552", 
              "https://doi.org/10.1007/bf00692089"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0019-1035(90)90084-m", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040062540"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0019-1035(90)90084-m", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040062540"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1070/rm1963v018n06abeh001143", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058193727"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.70.2975", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060806856"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.70.2975", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060806856"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.241.4864.433", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062536470"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1995-07", 
        "datePublishedReg": "1995-07-01", 
        "description": "We present a direct method for the expansion of the planetary Hamiltonian in Poincar\u00e9 canonical elliptic variables with its effective implementation in computer algebra. This method allows us to demonstrate the existence of simplifications occurring in the analytical expression of the Hamiltonian coefficients. All the coefficients depending on the ratio of the semi major axis can thus be expressed in a concise and canonical form.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf00692088", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136436", 
            "issn": [
              "0008-8714", 
              "0923-2958"
            ], 
            "name": "Celestial Mechanics and Dynamical Astronomy", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "62"
          }
        ], 
        "name": "Stability of the planetary three-body problem", 
        "pagination": "193-217", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf00692088"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "4e26037c485f8f1300bbe7500bbe6092487e0dc40b3024f0dd3ca51583a25b07"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1016401816"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf00692088", 
          "https://app.dimensions.ai/details/publication/pub.1016401816"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-15T09:02", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000375_0000000375/records_91456_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF00692088"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00692088'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00692088'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00692088'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00692088'


     

    This table displays all metadata directly associated to this object as RDF triples.

    89 TRIPLES      21 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf00692088 schema:about anzsrc-for:01
    2 anzsrc-for:0103
    3 schema:author N22646dff9b4a43e79e6f9a50fc703561
    4 schema:citation sg:pub.10.1007/bf00692089
    5 sg:pub.10.1038/338237a0
    6 https://doi.org/10.1016/0019-1035(90)90084-m
    7 https://doi.org/10.1070/rm1963v018n06abeh001143
    8 https://doi.org/10.1103/physrevlett.70.2975
    9 https://doi.org/10.1126/science.241.4864.433
    10 schema:datePublished 1995-07
    11 schema:datePublishedReg 1995-07-01
    12 schema:description We present a direct method for the expansion of the planetary Hamiltonian in Poincaré canonical elliptic variables with its effective implementation in computer algebra. This method allows us to demonstrate the existence of simplifications occurring in the analytical expression of the Hamiltonian coefficients. All the coefficients depending on the ratio of the semi major axis can thus be expressed in a concise and canonical form.
    13 schema:genre research_article
    14 schema:inLanguage en
    15 schema:isAccessibleForFree false
    16 schema:isPartOf Nb4c6bc99e32f4dad9a0c80f2e2fbc72e
    17 Nc43d8dcf4cf0414b948238390f8904cf
    18 sg:journal.1136436
    19 schema:name Stability of the planetary three-body problem
    20 schema:pagination 193-217
    21 schema:productId N57a29f8e073b43f295a2541f02516804
    22 N5e9332321c1445848971fe8d50da4dd5
    23 Nbdacbbe149024fd89554191125116ca9
    24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016401816
    25 https://doi.org/10.1007/bf00692088
    26 schema:sdDatePublished 2019-04-15T09:02
    27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    28 schema:sdPublisher Na5a6345f947542108f16c5eaaee03a7e
    29 schema:url http://link.springer.com/10.1007/BF00692088
    30 sgo:license sg:explorer/license/
    31 sgo:sdDataset articles
    32 rdf:type schema:ScholarlyArticle
    33 N17f09b466193480ebbbe71122c46886a schema:name CNRS-Astronomie et Systèmes Dynamiques, Bureau des Longitudes, 3 rue Mazarine, 75006, Paris, France
    34 rdf:type schema:Organization
    35 N1f81709a0cfb472fa29938ef065b318e schema:name CNRS-Astronomie et Systèmes Dynamiques, Bureau des Longitudes, 3 rue Mazarine, 75006, Paris, France
    36 rdf:type schema:Organization
    37 N22646dff9b4a43e79e6f9a50fc703561 rdf:first sg:person.01142167464.02
    38 rdf:rest Nc9f7852321ee4614ab7c8b056cc294c6
    39 N57a29f8e073b43f295a2541f02516804 schema:name dimensions_id
    40 schema:value pub.1016401816
    41 rdf:type schema:PropertyValue
    42 N5e9332321c1445848971fe8d50da4dd5 schema:name readcube_id
    43 schema:value 4e26037c485f8f1300bbe7500bbe6092487e0dc40b3024f0dd3ca51583a25b07
    44 rdf:type schema:PropertyValue
    45 Na5a6345f947542108f16c5eaaee03a7e schema:name Springer Nature - SN SciGraph project
    46 rdf:type schema:Organization
    47 Nb4c6bc99e32f4dad9a0c80f2e2fbc72e schema:issueNumber 3
    48 rdf:type schema:PublicationIssue
    49 Nbdacbbe149024fd89554191125116ca9 schema:name doi
    50 schema:value 10.1007/bf00692088
    51 rdf:type schema:PropertyValue
    52 Nc43d8dcf4cf0414b948238390f8904cf schema:volumeNumber 62
    53 rdf:type schema:PublicationVolume
    54 Nc9f7852321ee4614ab7c8b056cc294c6 rdf:first sg:person.015026413031.40
    55 rdf:rest rdf:nil
    56 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    57 schema:name Mathematical Sciences
    58 rdf:type schema:DefinedTerm
    59 anzsrc-for:0103 schema:inDefinedTermSet anzsrc-for:
    60 schema:name Numerical and Computational Mathematics
    61 rdf:type schema:DefinedTerm
    62 sg:journal.1136436 schema:issn 0008-8714
    63 0923-2958
    64 schema:name Celestial Mechanics and Dynamical Astronomy
    65 rdf:type schema:Periodical
    66 sg:person.01142167464.02 schema:affiliation N1f81709a0cfb472fa29938ef065b318e
    67 schema:familyName Laskar
    68 schema:givenName Jacques
    69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142167464.02
    70 rdf:type schema:Person
    71 sg:person.015026413031.40 schema:affiliation N17f09b466193480ebbbe71122c46886a
    72 schema:familyName Robutel
    73 schema:givenName Philippe
    74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015026413031.40
    75 rdf:type schema:Person
    76 sg:pub.10.1007/bf00692089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016738552
    77 https://doi.org/10.1007/bf00692089
    78 rdf:type schema:CreativeWork
    79 sg:pub.10.1038/338237a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015108153
    80 https://doi.org/10.1038/338237a0
    81 rdf:type schema:CreativeWork
    82 https://doi.org/10.1016/0019-1035(90)90084-m schema:sameAs https://app.dimensions.ai/details/publication/pub.1040062540
    83 rdf:type schema:CreativeWork
    84 https://doi.org/10.1070/rm1963v018n06abeh001143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058193727
    85 rdf:type schema:CreativeWork
    86 https://doi.org/10.1103/physrevlett.70.2975 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060806856
    87 rdf:type schema:CreativeWork
    88 https://doi.org/10.1126/science.241.4864.433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062536470
    89 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...