Relaxation processes in a condensed Bose gas View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1984-02

AUTHORS

Ulrich Eckern

ABSTRACT

We develop, on the basis of the self-consistent mean-field approximation, the kinetic theory for a dilute Bose gas below the Bose-Einstein transition temperature. The collision operator in the Boltzmann equation is calculated by golden rule arguments, and the momentum and temperature dependences of the scattering rates are determined. As an application, we consider the relaxation of a nonequilibrium distribution of the quasiparticles. We discuss the relevance of our calculation for the (hypothetical) condensed state of spinpolarized hydrogen. More... »

PAGES

333-359

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00683281

DOI

http://dx.doi.org/10.1007/bf00683281

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1053558165


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Theorie der Kondensierten Materie, Universit\u00e4t Karlsruhe, Karlsruhe, Federal Republic of Germany", 
          "id": "http://www.grid.ac/institutes/grid.7892.4", 
          "name": [
            "Institut f\u00fcr Theorie der Kondensierten Materie, Universit\u00e4t Karlsruhe, Karlsruhe, Federal Republic of Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eckern", 
        "givenName": "Ulrich", 
        "id": "sg:person.012657025101.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012657025101.49"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00115630", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029223167", 
          "https://doi.org/10.1007/bf00115630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02731494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039064618", 
          "https://doi.org/10.1007/bf02731494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00115264", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000153960", 
          "https://doi.org/10.1007/bf00115264"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1984-02", 
    "datePublishedReg": "1984-02-01", 
    "description": "We develop, on the basis of the self-consistent mean-field approximation, the kinetic theory for a dilute Bose gas below the Bose-Einstein transition temperature. The collision operator in the Boltzmann equation is calculated by golden rule arguments, and the momentum and temperature dependences of the scattering rates are determined. As an application, we consider the relaxation of a nonequilibrium distribution of the quasiparticles. We discuss the relevance of our calculation for the (hypothetical) condensed state of spinpolarized hydrogen.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf00683281", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1030474", 
        "issn": [
          "0022-2291", 
          "1573-7357"
        ], 
        "name": "Journal of Low Temperature Physics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "54"
      }
    ], 
    "keywords": [
      "Bose gas", 
      "self-consistent mean-field approximation", 
      "Bose-Einstein transition temperature", 
      "dilute Bose gas", 
      "mean-field approximation", 
      "golden rule arguments", 
      "nonequilibrium distribution", 
      "relaxation processes", 
      "Boltzmann equation", 
      "collision operator", 
      "kinetic theory", 
      "temperature dependence", 
      "gas", 
      "quasiparticles", 
      "transition temperature", 
      "momentum", 
      "calculations", 
      "relaxation", 
      "dependence", 
      "hydrogen", 
      "approximation", 
      "state", 
      "theory", 
      "temperature", 
      "distribution", 
      "equations", 
      "applications", 
      "process", 
      "operators", 
      "basis", 
      "argument", 
      "rate", 
      "relevance", 
      "rule arguments", 
      "spinpolarized hydrogen"
    ], 
    "name": "Relaxation processes in a condensed Bose gas", 
    "pagination": "333-359", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1053558165"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00683281"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00683281", 
      "https://app.dimensions.ai/details/publication/pub.1053558165"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_168.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf00683281"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00683281'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00683281'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00683281'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00683281'


 

This table displays all metadata directly associated to this object as RDF triples.

105 TRIPLES      22 PREDICATES      64 URIs      53 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00683281 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author Nb2a8921e5fac4feeafeb9b32af6bbcdc
4 schema:citation sg:pub.10.1007/bf00115264
5 sg:pub.10.1007/bf00115630
6 sg:pub.10.1007/bf02731494
7 schema:datePublished 1984-02
8 schema:datePublishedReg 1984-02-01
9 schema:description We develop, on the basis of the self-consistent mean-field approximation, the kinetic theory for a dilute Bose gas below the Bose-Einstein transition temperature. The collision operator in the Boltzmann equation is calculated by golden rule arguments, and the momentum and temperature dependences of the scattering rates are determined. As an application, we consider the relaxation of a nonequilibrium distribution of the quasiparticles. We discuss the relevance of our calculation for the (hypothetical) condensed state of spinpolarized hydrogen.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree true
13 schema:isPartOf N6cac3d5949cb43f08b9966ee84148f56
14 Nb2cc960f40dc486db38aec6c2505593a
15 sg:journal.1030474
16 schema:keywords Boltzmann equation
17 Bose gas
18 Bose-Einstein transition temperature
19 applications
20 approximation
21 argument
22 basis
23 calculations
24 collision operator
25 dependence
26 dilute Bose gas
27 distribution
28 equations
29 gas
30 golden rule arguments
31 hydrogen
32 kinetic theory
33 mean-field approximation
34 momentum
35 nonequilibrium distribution
36 operators
37 process
38 quasiparticles
39 rate
40 relaxation
41 relaxation processes
42 relevance
43 rule arguments
44 self-consistent mean-field approximation
45 spinpolarized hydrogen
46 state
47 temperature
48 temperature dependence
49 theory
50 transition temperature
51 schema:name Relaxation processes in a condensed Bose gas
52 schema:pagination 333-359
53 schema:productId N6773169fd7cb42fbb3e47c54423c6b74
54 Naf9c9327d9ef420dbfe13fbae7554846
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053558165
56 https://doi.org/10.1007/bf00683281
57 schema:sdDatePublished 2022-01-01T18:02
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N05281d60dac5413abb79fbad0a844e91
60 schema:url https://doi.org/10.1007/bf00683281
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N05281d60dac5413abb79fbad0a844e91 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 N6773169fd7cb42fbb3e47c54423c6b74 schema:name doi
67 schema:value 10.1007/bf00683281
68 rdf:type schema:PropertyValue
69 N6cac3d5949cb43f08b9966ee84148f56 schema:volumeNumber 54
70 rdf:type schema:PublicationVolume
71 Naf9c9327d9ef420dbfe13fbae7554846 schema:name dimensions_id
72 schema:value pub.1053558165
73 rdf:type schema:PropertyValue
74 Nb2a8921e5fac4feeafeb9b32af6bbcdc rdf:first sg:person.012657025101.49
75 rdf:rest rdf:nil
76 Nb2cc960f40dc486db38aec6c2505593a schema:issueNumber 3-4
77 rdf:type schema:PublicationIssue
78 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
79 schema:name Physical Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
82 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
83 rdf:type schema:DefinedTerm
84 sg:journal.1030474 schema:issn 0022-2291
85 1573-7357
86 schema:name Journal of Low Temperature Physics
87 schema:publisher Springer Nature
88 rdf:type schema:Periodical
89 sg:person.012657025101.49 schema:affiliation grid-institutes:grid.7892.4
90 schema:familyName Eckern
91 schema:givenName Ulrich
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012657025101.49
93 rdf:type schema:Person
94 sg:pub.10.1007/bf00115264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000153960
95 https://doi.org/10.1007/bf00115264
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/bf00115630 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029223167
98 https://doi.org/10.1007/bf00115630
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/bf02731494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039064618
101 https://doi.org/10.1007/bf02731494
102 rdf:type schema:CreativeWork
103 grid-institutes:grid.7892.4 schema:alternateName Institut für Theorie der Kondensierten Materie, Universität Karlsruhe, Karlsruhe, Federal Republic of Germany
104 schema:name Institut für Theorie der Kondensierten Materie, Universität Karlsruhe, Karlsruhe, Federal Republic of Germany
105 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...