Filters and supports in orthoalgebras View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1992-05

AUTHORS

D. J. Foulis, R. J. Greechie, G. T. Rüttimann

ABSTRACT

An orthoalgebra, which is a natural generalization of an orthomodular lattice or poset, may be viewed as a “logic” or “proposition system” and, under a welldefined set of circumstances, its elements may be classified according to the Aristotelian modalities: necessary, impossible, possible, and contingent. The necessary propositions band together to form a local filter, that is, a set that intersects every Boolean subalgebra in a filter. In this paper, we give a coherent account of the basic theory of Orthoalgebras, define and study filters, local filters, and associated structures, and prove a version of the compactness theorem in classical algebraic logic. More... »

PAGES

789-807

References to SciGraph publications

  • 1985-11. Banach spaces of weights on quasimanuals in INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
  • 1986-12. Quantum supports and modal logic in FOUNDATIONS OF PHYSICS
  • 1987-03. Tensor products and probability weights in INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
  • 1973. Quantum Logics in CONTEMPORARY RESEARCH IN THE FOUNDATIONS AND PHILOSOPHY OF QUANTUM THEORY
  • 1990-06. On the inverse FPR problem: Quantum is classical in FOUNDATIONS OF PHYSICS
  • 1981. What are Quantum Logics and What Ought They to be? in CURRENT ISSUES IN QUANTUM LOGIC
  • 1976. On the Foundations of Quantum Physics in QUANTUM MECHANICS, DETERMINISM, CAUSALITY, AND PARTICLES
  • 1989-07. Coupled physical systems in FOUNDATIONS OF PHYSICS
  • 1985-01. Connections among quantum logics. Part 1. Quantum propositional logics in INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
  • 1985-01. Connections among quantum logics. Part 2. Quantum event logics in INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf00678545

    DOI

    http://dx.doi.org/10.1007/bf00678545

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1050899565


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts", 
              "id": "http://www.grid.ac/institutes/grid.266683.f", 
              "name": [
                "Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Foulis", 
            "givenName": "D. J.", 
            "id": "sg:person.010411661753.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010411661753.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics, Louisiana Technical University, Ruston, Louisiana", 
              "id": "http://www.grid.ac/institutes/grid.259237.8", 
              "name": [
                "Department of Mathematics, Kansas State University, Manhattan, Kansas", 
                "Department of Mathematics, Louisiana Technical University, Ruston, Louisiana"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Greechie", 
            "givenName": "R. J.", 
            "id": "sg:person.010271655321.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010271655321.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mathematics and Statistics, University of Berne, Berne, Switzerland", 
              "id": "http://www.grid.ac/institutes/grid.5734.5", 
              "name": [
                "Department of Mathematics and Statistics, University of Berne, Berne, Switzerland"
              ], 
              "type": "Organization"
            }, 
            "familyName": "R\u00fcttimann", 
            "givenName": "G. T.", 
            "id": "sg:person.014262576725.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014262576725.08"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00670072", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043228708", 
              "https://doi.org/10.1007/bf00670072"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00668911", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007183641", 
              "https://doi.org/10.1007/bf00668911"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-010-2534-8_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038278811", 
              "https://doi.org/10.1007/978-94-010-2534-8_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01889305", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025837472", 
              "https://doi.org/10.1007/bf01889305"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00732121", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037922545", 
              "https://doi.org/10.1007/bf00732121"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00671309", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044011713", 
              "https://doi.org/10.1007/bf00671309"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4613-3228-2_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025561636", 
              "https://doi.org/10.1007/978-1-4613-3228-2_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01889452", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041226803", 
              "https://doi.org/10.1007/bf01889452"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00670073", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047652834", 
              "https://doi.org/10.1007/bf00670073"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-010-1440-3_7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032031330", 
              "https://doi.org/10.1007/978-94-010-1440-3_7"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1992-05", 
        "datePublishedReg": "1992-05-01", 
        "description": "An orthoalgebra, which is a natural generalization of an orthomodular lattice or poset, may be viewed as a \u201clogic\u201d or \u201cproposition system\u201d and, under a welldefined set of circumstances, its elements may be classified according to the Aristotelian modalities: necessary, impossible, possible, and contingent. The necessary propositions band together to form a local filter, that is, a set that intersects every Boolean subalgebra in a filter. In this paper, we give a coherent account of the basic theory of Orthoalgebras, define and study filters, local filters, and associated structures, and prove a version of the compactness theorem in classical algebraic logic.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf00678545", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1053677", 
            "issn": [
              "0020-7748", 
              "1572-9575"
            ], 
            "name": "International Journal of Theoretical Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "31"
          }
        ], 
        "keywords": [
          "Aristotelian modalities", 
          "necessary propositions", 
          "coherent account", 
          "Boolean subalgebras", 
          "algebraic logic", 
          "logic", 
          "contingent", 
          "proposition", 
          "account", 
          "theory", 
          "circumstances", 
          "basic theory", 
          "version", 
          "elements", 
          "paper", 
          "support", 
          "set", 
          "generalization", 
          "modalities", 
          "theorem", 
          "system", 
          "structure", 
          "natural generalization", 
          "subalgebra", 
          "local filters", 
          "filter", 
          "orthoalgebras", 
          "orthomodular lattices", 
          "lattice", 
          "posets", 
          "compactness theorem", 
          "proposition system", 
          "welldefined set", 
          "classical algebraic logic"
        ], 
        "name": "Filters and supports in orthoalgebras", 
        "pagination": "789-807", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1050899565"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf00678545"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf00678545", 
          "https://app.dimensions.ai/details/publication/pub.1050899565"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:00", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_260.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf00678545"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00678545'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00678545'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00678545'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00678545'


     

    This table displays all metadata directly associated to this object as RDF triples.

    153 TRIPLES      22 PREDICATES      70 URIs      52 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf00678545 schema:about anzsrc-for:01
    2 anzsrc-for:02
    3 schema:author N2733adadfc664100ae5550e949517ef0
    4 schema:citation sg:pub.10.1007/978-1-4613-3228-2_3
    5 sg:pub.10.1007/978-94-010-1440-3_7
    6 sg:pub.10.1007/978-94-010-2534-8_5
    7 sg:pub.10.1007/bf00668911
    8 sg:pub.10.1007/bf00670072
    9 sg:pub.10.1007/bf00670073
    10 sg:pub.10.1007/bf00671309
    11 sg:pub.10.1007/bf00732121
    12 sg:pub.10.1007/bf01889305
    13 sg:pub.10.1007/bf01889452
    14 schema:datePublished 1992-05
    15 schema:datePublishedReg 1992-05-01
    16 schema:description An orthoalgebra, which is a natural generalization of an orthomodular lattice or poset, may be viewed as a “logic” or “proposition system” and, under a welldefined set of circumstances, its elements may be classified according to the Aristotelian modalities: necessary, impossible, possible, and contingent. The necessary propositions band together to form a local filter, that is, a set that intersects every Boolean subalgebra in a filter. In this paper, we give a coherent account of the basic theory of Orthoalgebras, define and study filters, local filters, and associated structures, and prove a version of the compactness theorem in classical algebraic logic.
    17 schema:genre article
    18 schema:inLanguage en
    19 schema:isAccessibleForFree false
    20 schema:isPartOf N907eaae025b444e4a679000548a4ea2a
    21 Nd91f2f5c26c941e3beadf6f4c12e4c46
    22 sg:journal.1053677
    23 schema:keywords Aristotelian modalities
    24 Boolean subalgebras
    25 account
    26 algebraic logic
    27 basic theory
    28 circumstances
    29 classical algebraic logic
    30 coherent account
    31 compactness theorem
    32 contingent
    33 elements
    34 filter
    35 generalization
    36 lattice
    37 local filters
    38 logic
    39 modalities
    40 natural generalization
    41 necessary propositions
    42 orthoalgebras
    43 orthomodular lattices
    44 paper
    45 posets
    46 proposition
    47 proposition system
    48 set
    49 structure
    50 subalgebra
    51 support
    52 system
    53 theorem
    54 theory
    55 version
    56 welldefined set
    57 schema:name Filters and supports in orthoalgebras
    58 schema:pagination 789-807
    59 schema:productId N0f7b1c2ed60946548d4b2e3ffd10c7d6
    60 Nbdddb48ba5b84596a3b625b161aec0b4
    61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050899565
    62 https://doi.org/10.1007/bf00678545
    63 schema:sdDatePublished 2021-11-01T18:00
    64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    65 schema:sdPublisher Nad1e39639a5f483aabea11176b84f830
    66 schema:url https://doi.org/10.1007/bf00678545
    67 sgo:license sg:explorer/license/
    68 sgo:sdDataset articles
    69 rdf:type schema:ScholarlyArticle
    70 N0f7b1c2ed60946548d4b2e3ffd10c7d6 schema:name dimensions_id
    71 schema:value pub.1050899565
    72 rdf:type schema:PropertyValue
    73 N2733adadfc664100ae5550e949517ef0 rdf:first sg:person.010411661753.25
    74 rdf:rest Ne5f89f48aa1a4e3cbe2d6349000bbee3
    75 N4a312253618b48e0b32710a8aaf5601c rdf:first sg:person.014262576725.08
    76 rdf:rest rdf:nil
    77 N907eaae025b444e4a679000548a4ea2a schema:issueNumber 5
    78 rdf:type schema:PublicationIssue
    79 Nad1e39639a5f483aabea11176b84f830 schema:name Springer Nature - SN SciGraph project
    80 rdf:type schema:Organization
    81 Nbdddb48ba5b84596a3b625b161aec0b4 schema:name doi
    82 schema:value 10.1007/bf00678545
    83 rdf:type schema:PropertyValue
    84 Nd91f2f5c26c941e3beadf6f4c12e4c46 schema:volumeNumber 31
    85 rdf:type schema:PublicationVolume
    86 Ne5f89f48aa1a4e3cbe2d6349000bbee3 rdf:first sg:person.010271655321.48
    87 rdf:rest N4a312253618b48e0b32710a8aaf5601c
    88 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    89 schema:name Mathematical Sciences
    90 rdf:type schema:DefinedTerm
    91 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    92 schema:name Physical Sciences
    93 rdf:type schema:DefinedTerm
    94 sg:journal.1053677 schema:issn 0020-7748
    95 1572-9575
    96 schema:name International Journal of Theoretical Physics
    97 schema:publisher Springer Nature
    98 rdf:type schema:Periodical
    99 sg:person.010271655321.48 schema:affiliation grid-institutes:grid.259237.8
    100 schema:familyName Greechie
    101 schema:givenName R. J.
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010271655321.48
    103 rdf:type schema:Person
    104 sg:person.010411661753.25 schema:affiliation grid-institutes:grid.266683.f
    105 schema:familyName Foulis
    106 schema:givenName D. J.
    107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010411661753.25
    108 rdf:type schema:Person
    109 sg:person.014262576725.08 schema:affiliation grid-institutes:grid.5734.5
    110 schema:familyName Rüttimann
    111 schema:givenName G. T.
    112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014262576725.08
    113 rdf:type schema:Person
    114 sg:pub.10.1007/978-1-4613-3228-2_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025561636
    115 https://doi.org/10.1007/978-1-4613-3228-2_3
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/978-94-010-1440-3_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032031330
    118 https://doi.org/10.1007/978-94-010-1440-3_7
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1007/978-94-010-2534-8_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038278811
    121 https://doi.org/10.1007/978-94-010-2534-8_5
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1007/bf00668911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007183641
    124 https://doi.org/10.1007/bf00668911
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1007/bf00670072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043228708
    127 https://doi.org/10.1007/bf00670072
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1007/bf00670073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047652834
    130 https://doi.org/10.1007/bf00670073
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1007/bf00671309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044011713
    133 https://doi.org/10.1007/bf00671309
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1007/bf00732121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037922545
    136 https://doi.org/10.1007/bf00732121
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1007/bf01889305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025837472
    139 https://doi.org/10.1007/bf01889305
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1007/bf01889452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041226803
    142 https://doi.org/10.1007/bf01889452
    143 rdf:type schema:CreativeWork
    144 grid-institutes:grid.259237.8 schema:alternateName Department of Mathematics, Louisiana Technical University, Ruston, Louisiana
    145 schema:name Department of Mathematics, Kansas State University, Manhattan, Kansas
    146 Department of Mathematics, Louisiana Technical University, Ruston, Louisiana
    147 rdf:type schema:Organization
    148 grid-institutes:grid.266683.f schema:alternateName Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts
    149 schema:name Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts
    150 rdf:type schema:Organization
    151 grid-institutes:grid.5734.5 schema:alternateName Department of Mathematics and Statistics, University of Berne, Berne, Switzerland
    152 schema:name Department of Mathematics and Statistics, University of Berne, Berne, Switzerland
    153 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...