Double H-bridged and single H-bridged diboryl radicals View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1990-03

AUTHORS

M. Trachtman, C. W. Bock, Hiromi Niki, Gilbert J. Mains

ABSTRACT

The structures of B2H5·, B2H5CO·, and B2H5N2· radicals are investigated using the 6–31G* basis set. Both double H-bridged and single H-bridged isomers are found to be local minima on the potential energy surface. The effects of electron correlation are taken into account using single point MP4/6–31G* calculations and, for the diboryl radicals, complete MP3/6–31G* optimizations. In all cases the single H-bridged isomers are found to be more stable than the corresponding double H-bridged isomers. The transition state for the double H-bridged to single H-bridged B2H5· isomerization reaction is calculated to be 2.54 kcal mol−1 above the double H-bridged radical at the MP4SDTQ/6-31G*//UHF/ 6–31 G* level when corrected for zero point energy. Barrier tunneling increased the reaction rate by a factor of 2.5–3.0, strongly suggesting the system is fluxional at this temperature. The addition of CO and N2 to the diboryl radicals leads to relocation of the unpaired electron and rehybridization of the C and N atoms adjacent to the boron atoms. The isomers of B2H5CO· and B2H5N2· are different and should be distinguishable experimentally. While the CO moiety is bound to the diboryl radicals isomers by over 19 kcal mol−1, no binding energy is evident for N2. More... »

PAGES

171-178

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00674259

DOI

http://dx.doi.org/10.1007/bf00674259

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025223847


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Chemistry, Philadelphia College of Textiles and Science, 19144, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Trachtman", 
        "givenName": "M.", 
        "id": "sg:person.012737773203.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012737773203.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Chemistry, Philadelphia College of Textiles and Science, 19144, Philadelphia, PA, USA", 
            "American Research Institute, 19061, Marcus Hook, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bock", 
        "givenName": "C. W.", 
        "id": "sg:person.013774572017.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013774572017.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "York University", 
          "id": "https://www.grid.ac/institutes/grid.21100.32", 
          "name": [
            "Department of Chemistry, York University, M3J 1P3, North York, Ontario, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Niki", 
        "givenName": "Hiromi", 
        "id": "sg:person.010560553725.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010560553725.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Oklahoma State University", 
          "id": "https://www.grid.ac/institutes/grid.65519.3e", 
          "name": [
            "Department of Chemistry, Oklahoma State University, 74078, Stillwater, OK, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mains", 
        "givenName": "Gilbert J.", 
        "id": "sg:person.011521513726.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011521513726.22"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00533485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015541359", 
          "https://doi.org/10.1007/bf00533485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00573865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029241743", 
          "https://doi.org/10.1007/bf00573865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2860(77)87074-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038171984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ic00198a027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055546961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ic00208a039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055547359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ic00271a016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055549970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/j100257a026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055661378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/j100273a012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055662129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/j100313a012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055664061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/j100324a023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055664722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00262a014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055718515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00374a017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055727390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00439a018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055732619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00505a009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055737846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00523a008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055739221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.444267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058022289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.454303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058032319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.454532", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058032548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.455656", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058033668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.46.618", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060448136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.46.618", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060448136"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1990-03", 
    "datePublishedReg": "1990-03-01", 
    "description": "The structures of B2H5\u00b7, B2H5CO\u00b7, and B2H5N2\u00b7 radicals are investigated using the 6\u201331G* basis set. Both double H-bridged and single H-bridged isomers are found to be local minima on the potential energy surface. The effects of electron correlation are taken into account using single point MP4/6\u201331G* calculations and, for the diboryl radicals, complete MP3/6\u201331G* optimizations. In all cases the single H-bridged isomers are found to be more stable than the corresponding double H-bridged isomers. The transition state for the double H-bridged to single H-bridged B2H5\u00b7 isomerization reaction is calculated to be 2.54 kcal mol\u22121 above the double H-bridged radical at the MP4SDTQ/6-31G*//UHF/ 6\u201331 G* level when corrected for zero point energy. Barrier tunneling increased the reaction rate by a factor of 2.5\u20133.0, strongly suggesting the system is fluxional at this temperature. The addition of CO and N2 to the diboryl radicals leads to relocation of the unpaired electron and rehybridization of the C and N atoms adjacent to the boron atoms. The isomers of B2H5CO\u00b7 and B2H5N2\u00b7 are different and should be distinguishable experimentally. While the CO moiety is bound to the diboryl radicals isomers by over 19 kcal mol\u22121, no binding energy is evident for N2.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf00674259", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1046791", 
        "issn": [
          "1040-0400", 
          "1572-9001"
        ], 
        "name": "Structural Chemistry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2-3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "1"
      }
    ], 
    "name": "Double H-bridged and single H-bridged diboryl radicals", 
    "pagination": "171-178", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "782aa59ad5588897ec1fb5d19afc3fd253807b2559402d670ccb9cf94d90812d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00674259"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025223847"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00674259", 
      "https://app.dimensions.ai/details/publication/pub.1025223847"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000372_0000000372/records_117088_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF00674259"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00674259'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00674259'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00674259'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00674259'


 

This table displays all metadata directly associated to this object as RDF triples.

152 TRIPLES      21 PREDICATES      47 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00674259 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Na3474877e2bb4a1cb2e5317cd4017e02
4 schema:citation sg:pub.10.1007/bf00533485
5 sg:pub.10.1007/bf00573865
6 https://doi.org/10.1016/0022-2860(77)87074-9
7 https://doi.org/10.1021/ic00198a027
8 https://doi.org/10.1021/ic00208a039
9 https://doi.org/10.1021/ic00271a016
10 https://doi.org/10.1021/j100257a026
11 https://doi.org/10.1021/j100273a012
12 https://doi.org/10.1021/j100313a012
13 https://doi.org/10.1021/j100324a023
14 https://doi.org/10.1021/ja00262a014
15 https://doi.org/10.1021/ja00374a017
16 https://doi.org/10.1021/ja00439a018
17 https://doi.org/10.1021/ja00505a009
18 https://doi.org/10.1021/ja00523a008
19 https://doi.org/10.1063/1.444267
20 https://doi.org/10.1063/1.454303
21 https://doi.org/10.1063/1.454532
22 https://doi.org/10.1063/1.455656
23 https://doi.org/10.1103/physrev.46.618
24 schema:datePublished 1990-03
25 schema:datePublishedReg 1990-03-01
26 schema:description The structures of B2H5·, B2H5CO·, and B2H5N2· radicals are investigated using the 6–31G* basis set. Both double H-bridged and single H-bridged isomers are found to be local minima on the potential energy surface. The effects of electron correlation are taken into account using single point MP4/6–31G* calculations and, for the diboryl radicals, complete MP3/6–31G* optimizations. In all cases the single H-bridged isomers are found to be more stable than the corresponding double H-bridged isomers. The transition state for the double H-bridged to single H-bridged B2H5· isomerization reaction is calculated to be 2.54 kcal mol−1 above the double H-bridged radical at the MP4SDTQ/6-31G*//UHF/ 6–31 G* level when corrected for zero point energy. Barrier tunneling increased the reaction rate by a factor of 2.5–3.0, strongly suggesting the system is fluxional at this temperature. The addition of CO and N2 to the diboryl radicals leads to relocation of the unpaired electron and rehybridization of the C and N atoms adjacent to the boron atoms. The isomers of B2H5CO· and B2H5N2· are different and should be distinguishable experimentally. While the CO moiety is bound to the diboryl radicals isomers by over 19 kcal mol−1, no binding energy is evident for N2.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree false
30 schema:isPartOf N269d9de24d1f4b83927a953cb0f89d7f
31 N79d1be542f404c6eabfc3b80689959dc
32 sg:journal.1046791
33 schema:name Double H-bridged and single H-bridged diboryl radicals
34 schema:pagination 171-178
35 schema:productId N655785a342b843e6a7dabd84667580e2
36 N8394ef09a1f14d929abcc32d07df5822
37 Nffa12fad3d9f4d1db2aac92bf75691e2
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025223847
39 https://doi.org/10.1007/bf00674259
40 schema:sdDatePublished 2019-04-11T14:16
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher N8507b617df094791ae836e01b953fbe6
43 schema:url http://link.springer.com/10.1007/BF00674259
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N1d75804bac474f52a2c5b6950a645b00 schema:name American Research Institute, 19061, Marcus Hook, PA, USA
48 Department of Chemistry, Philadelphia College of Textiles and Science, 19144, Philadelphia, PA, USA
49 rdf:type schema:Organization
50 N244a671c12e344819a9a554e684b3675 schema:name Department of Chemistry, Philadelphia College of Textiles and Science, 19144, Philadelphia, PA, USA
51 rdf:type schema:Organization
52 N269d9de24d1f4b83927a953cb0f89d7f schema:issueNumber 2-3
53 rdf:type schema:PublicationIssue
54 N38e23c9a5e434f4d90d72b5614288044 rdf:first sg:person.010560553725.23
55 rdf:rest Naab0e2e60a364b27aaf984d74e11b01c
56 N655785a342b843e6a7dabd84667580e2 schema:name doi
57 schema:value 10.1007/bf00674259
58 rdf:type schema:PropertyValue
59 N79d1be542f404c6eabfc3b80689959dc schema:volumeNumber 1
60 rdf:type schema:PublicationVolume
61 N8394ef09a1f14d929abcc32d07df5822 schema:name dimensions_id
62 schema:value pub.1025223847
63 rdf:type schema:PropertyValue
64 N8507b617df094791ae836e01b953fbe6 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 N8dc4a78cc33745e38c99e9f7740b3d5c rdf:first sg:person.013774572017.91
67 rdf:rest N38e23c9a5e434f4d90d72b5614288044
68 Na3474877e2bb4a1cb2e5317cd4017e02 rdf:first sg:person.012737773203.27
69 rdf:rest N8dc4a78cc33745e38c99e9f7740b3d5c
70 Naab0e2e60a364b27aaf984d74e11b01c rdf:first sg:person.011521513726.22
71 rdf:rest rdf:nil
72 Nffa12fad3d9f4d1db2aac92bf75691e2 schema:name readcube_id
73 schema:value 782aa59ad5588897ec1fb5d19afc3fd253807b2559402d670ccb9cf94d90812d
74 rdf:type schema:PropertyValue
75 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
76 schema:name Chemical Sciences
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
79 schema:name Physical Chemistry (incl. Structural)
80 rdf:type schema:DefinedTerm
81 sg:journal.1046791 schema:issn 1040-0400
82 1572-9001
83 schema:name Structural Chemistry
84 rdf:type schema:Periodical
85 sg:person.010560553725.23 schema:affiliation https://www.grid.ac/institutes/grid.21100.32
86 schema:familyName Niki
87 schema:givenName Hiromi
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010560553725.23
89 rdf:type schema:Person
90 sg:person.011521513726.22 schema:affiliation https://www.grid.ac/institutes/grid.65519.3e
91 schema:familyName Mains
92 schema:givenName Gilbert J.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011521513726.22
94 rdf:type schema:Person
95 sg:person.012737773203.27 schema:affiliation N244a671c12e344819a9a554e684b3675
96 schema:familyName Trachtman
97 schema:givenName M.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012737773203.27
99 rdf:type schema:Person
100 sg:person.013774572017.91 schema:affiliation N1d75804bac474f52a2c5b6950a645b00
101 schema:familyName Bock
102 schema:givenName C. W.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013774572017.91
104 rdf:type schema:Person
105 sg:pub.10.1007/bf00533485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015541359
106 https://doi.org/10.1007/bf00533485
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/bf00573865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029241743
109 https://doi.org/10.1007/bf00573865
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/0022-2860(77)87074-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038171984
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1021/ic00198a027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055546961
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1021/ic00208a039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055547359
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1021/ic00271a016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055549970
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1021/j100257a026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055661378
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1021/j100273a012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055662129
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1021/j100313a012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055664061
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1021/j100324a023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055664722
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1021/ja00262a014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055718515
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1021/ja00374a017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055727390
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1021/ja00439a018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055732619
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1021/ja00505a009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055737846
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1021/ja00523a008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055739221
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1063/1.444267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058022289
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1063/1.454303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058032319
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1063/1.454532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058032548
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1063/1.455656 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058033668
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1103/physrev.46.618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060448136
146 rdf:type schema:CreativeWork
147 https://www.grid.ac/institutes/grid.21100.32 schema:alternateName York University
148 schema:name Department of Chemistry, York University, M3J 1P3, North York, Ontario, Canada
149 rdf:type schema:Organization
150 https://www.grid.ac/institutes/grid.65519.3e schema:alternateName Oklahoma State University
151 schema:name Department of Chemistry, Oklahoma State University, 74078, Stillwater, OK, USA
152 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...