Noncommutative version of Nikodym boundedness theorem for uniform space-valued functions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1995-07

AUTHORS

Paolo de Lucia, Endre Pap

ABSTRACT

A Nikodym boundedness-type theorem with necessary and sufficient conditions for a family of functions defined on a σ(⊕)-difference-poset and with values in a uniform space is proved. For a special important case — orthomodular lattice-the conditions are relaxed.

PAGES

981-993

References to SciGraph publications

  • 1994-07. Decompositions of measures on orthoalgebras and difference posets in INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
  • 1994-01. Contraexamples in difference posets and orthoalgebras in INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
  • 1993. Gleason’s Theorem and Its Applications in NONE
  • 1994-04. Difference posets, effects, and quantum measurements in INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
  • 1988-04. Completeness of inner product spaces and quantum logic of splitting subspaces in LETTERS IN MATHEMATICAL PHYSICS
  • 1992-05. Filters and supports in orthoalgebras in INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
  • 1959-09. РАДИАЦИОННЫЙ ЗАХВАТ МЕДЛЕННЫХ НЕЙТРОНОВ ЯДРАМИ АТОМОВ in CZECHOSLOVAK JOURNAL OF PHYSICS
  • 1985. Matrix Methods in Analysis in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf00671362

    DOI

    http://dx.doi.org/10.1007/bf00671362

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1000825354


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Dipartimento Matematica e Applicazioni, Universita Federico II, 80126, Naples, Italy", 
              "id": "http://www.grid.ac/institutes/grid.4691.a", 
              "name": [
                "Dipartimento Matematica e Applicazioni, Universita Federico II, 80126, Naples, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "de Lucia", 
            "givenName": "Paolo", 
            "id": "sg:person.014225467413.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014225467413.47"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Mathematics, University of Novi Sad, 21 000, Novi Sad, Yugoslavia", 
              "id": "http://www.grid.ac/institutes/grid.10822.39", 
              "name": [
                "Institute of Mathematics, University of Novi Sad, 21 000, Novi Sad, Yugoslavia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pap", 
            "givenName": "Endre", 
            "id": "sg:person.012354470173.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012354470173.10"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00678545", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050899565", 
              "https://doi.org/10.1007/bf00678545"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01556943", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038834139", 
              "https://doi.org/10.1007/bf01556943"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0072264", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002395657", 
              "https://doi.org/10.1007/bfb0072264"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00672820", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037767016", 
              "https://doi.org/10.1007/bf00672820"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00671618", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052652300", 
              "https://doi.org/10.1007/bf00671618"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00670684", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031751299", 
              "https://doi.org/10.1007/bf00670684"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-015-8222-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031999631", 
              "https://doi.org/10.1007/978-94-015-8222-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00398592", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025178363", 
              "https://doi.org/10.1007/bf00398592"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1995-07", 
        "datePublishedReg": "1995-07-01", 
        "description": "A Nikodym boundedness-type theorem with necessary and sufficient conditions for a family of functions defined on a \u03c3(\u2295)-difference-poset and with values in a uniform space is proved. For a special important case \u2014 orthomodular lattice-the conditions are relaxed.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf00671362", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1053677", 
            "issn": [
              "0020-7748", 
              "1572-9575"
            ], 
            "name": "International Journal of Theoretical Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "34"
          }
        ], 
        "keywords": [
          "theorem", 
          "sufficient conditions", 
          "family of functions", 
          "function", 
          "uniform spaces", 
          "lattice", 
          "noncommutative version", 
          "boundedness theorem", 
          "conditions", 
          "family", 
          "posets", 
          "values", 
          "space", 
          "version", 
          "Nikodym boundedness-type theorem", 
          "boundedness-type theorem", 
          "special important case \u2014 orthomodular lattice", 
          "important case \u2014 orthomodular lattice", 
          "case \u2014 orthomodular lattice", 
          "Nikodym\u2019s boundedness theorem", 
          "uniform space-valued functions", 
          "space-valued functions"
        ], 
        "name": "Noncommutative version of Nikodym boundedness theorem for uniform space-valued functions", 
        "pagination": "981-993", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1000825354"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf00671362"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf00671362", 
          "https://app.dimensions.ai/details/publication/pub.1000825354"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:09", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_269.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf00671362"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00671362'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00671362'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00671362'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00671362'


     

    This table displays all metadata directly associated to this object as RDF triples.

    122 TRIPLES      22 PREDICATES      56 URIs      40 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf00671362 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N1d8b22adbdbb4be99b88c8472b13af9f
    4 schema:citation sg:pub.10.1007/978-94-015-8222-3
    5 sg:pub.10.1007/bf00398592
    6 sg:pub.10.1007/bf00670684
    7 sg:pub.10.1007/bf00671618
    8 sg:pub.10.1007/bf00672820
    9 sg:pub.10.1007/bf00678545
    10 sg:pub.10.1007/bf01556943
    11 sg:pub.10.1007/bfb0072264
    12 schema:datePublished 1995-07
    13 schema:datePublishedReg 1995-07-01
    14 schema:description A Nikodym boundedness-type theorem with necessary and sufficient conditions for a family of functions defined on a σ(⊕)-difference-poset and with values in a uniform space is proved. For a special important case — orthomodular lattice-the conditions are relaxed.
    15 schema:genre article
    16 schema:inLanguage en
    17 schema:isAccessibleForFree false
    18 schema:isPartOf N180da518f65c47d5b37dfc9c1869f100
    19 Ne5ecdb2bf3b741d8bc5d265bdbb270d2
    20 sg:journal.1053677
    21 schema:keywords Nikodym boundedness-type theorem
    22 Nikodym’s boundedness theorem
    23 boundedness theorem
    24 boundedness-type theorem
    25 case — orthomodular lattice
    26 conditions
    27 family
    28 family of functions
    29 function
    30 important case — orthomodular lattice
    31 lattice
    32 noncommutative version
    33 posets
    34 space
    35 space-valued functions
    36 special important case — orthomodular lattice
    37 sufficient conditions
    38 theorem
    39 uniform space-valued functions
    40 uniform spaces
    41 values
    42 version
    43 schema:name Noncommutative version of Nikodym boundedness theorem for uniform space-valued functions
    44 schema:pagination 981-993
    45 schema:productId N3765329c516c40419b5b0546ef8de726
    46 N693f294927234373943aeb861e1687d1
    47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000825354
    48 https://doi.org/10.1007/bf00671362
    49 schema:sdDatePublished 2021-12-01T19:09
    50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    51 schema:sdPublisher N507783a3f89a4c0dac02c3a94fad8fb4
    52 schema:url https://doi.org/10.1007/bf00671362
    53 sgo:license sg:explorer/license/
    54 sgo:sdDataset articles
    55 rdf:type schema:ScholarlyArticle
    56 N180da518f65c47d5b37dfc9c1869f100 schema:volumeNumber 34
    57 rdf:type schema:PublicationVolume
    58 N1d8b22adbdbb4be99b88c8472b13af9f rdf:first sg:person.014225467413.47
    59 rdf:rest N85509c3bbec0484a8286e7c3edd257aa
    60 N3765329c516c40419b5b0546ef8de726 schema:name dimensions_id
    61 schema:value pub.1000825354
    62 rdf:type schema:PropertyValue
    63 N507783a3f89a4c0dac02c3a94fad8fb4 schema:name Springer Nature - SN SciGraph project
    64 rdf:type schema:Organization
    65 N693f294927234373943aeb861e1687d1 schema:name doi
    66 schema:value 10.1007/bf00671362
    67 rdf:type schema:PropertyValue
    68 N85509c3bbec0484a8286e7c3edd257aa rdf:first sg:person.012354470173.10
    69 rdf:rest rdf:nil
    70 Ne5ecdb2bf3b741d8bc5d265bdbb270d2 schema:issueNumber 7
    71 rdf:type schema:PublicationIssue
    72 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    73 schema:name Mathematical Sciences
    74 rdf:type schema:DefinedTerm
    75 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    76 schema:name Pure Mathematics
    77 rdf:type schema:DefinedTerm
    78 sg:journal.1053677 schema:issn 0020-7748
    79 1572-9575
    80 schema:name International Journal of Theoretical Physics
    81 schema:publisher Springer Nature
    82 rdf:type schema:Periodical
    83 sg:person.012354470173.10 schema:affiliation grid-institutes:grid.10822.39
    84 schema:familyName Pap
    85 schema:givenName Endre
    86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012354470173.10
    87 rdf:type schema:Person
    88 sg:person.014225467413.47 schema:affiliation grid-institutes:grid.4691.a
    89 schema:familyName de Lucia
    90 schema:givenName Paolo
    91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014225467413.47
    92 rdf:type schema:Person
    93 sg:pub.10.1007/978-94-015-8222-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031999631
    94 https://doi.org/10.1007/978-94-015-8222-3
    95 rdf:type schema:CreativeWork
    96 sg:pub.10.1007/bf00398592 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025178363
    97 https://doi.org/10.1007/bf00398592
    98 rdf:type schema:CreativeWork
    99 sg:pub.10.1007/bf00670684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031751299
    100 https://doi.org/10.1007/bf00670684
    101 rdf:type schema:CreativeWork
    102 sg:pub.10.1007/bf00671618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052652300
    103 https://doi.org/10.1007/bf00671618
    104 rdf:type schema:CreativeWork
    105 sg:pub.10.1007/bf00672820 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037767016
    106 https://doi.org/10.1007/bf00672820
    107 rdf:type schema:CreativeWork
    108 sg:pub.10.1007/bf00678545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050899565
    109 https://doi.org/10.1007/bf00678545
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1007/bf01556943 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038834139
    112 https://doi.org/10.1007/bf01556943
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1007/bfb0072264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002395657
    115 https://doi.org/10.1007/bfb0072264
    116 rdf:type schema:CreativeWork
    117 grid-institutes:grid.10822.39 schema:alternateName Institute of Mathematics, University of Novi Sad, 21 000, Novi Sad, Yugoslavia
    118 schema:name Institute of Mathematics, University of Novi Sad, 21 000, Novi Sad, Yugoslavia
    119 rdf:type schema:Organization
    120 grid-institutes:grid.4691.a schema:alternateName Dipartimento Matematica e Applicazioni, Universita Federico II, 80126, Naples, Italy
    121 schema:name Dipartimento Matematica e Applicazioni, Universita Federico II, 80126, Naples, Italy
    122 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...