Decompositions of measures on orthoalgebras and difference posets View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1994-07

AUTHORS

Anatolij Dvurečenskij, Beloslav Riečan

ABSTRACT

We present a general decomposition theorem for elements of an ordered group with respect to a cone. This result enables us to obtain decompositions of finitely additive measures defined on quantum logics, orthoalgebras, or, more generally, on difference posets with values in Dedekind complete lattice ordered groups, with respect to a given cone of measures. In particular, we gain Yosida-Hewitt-type and Lebesgue-type decompositions. More... »

PAGES

1387-1402

References to SciGraph publications

  • 1988-04. Completeness of inner product spaces and quantum logic of splitting subspaces in LETTERS IN MATHEMATICAL PHYSICS
  • 1992-05. Filters and supports in orthoalgebras in INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
  • 1993. Gleason’s Theorem and Its Applications in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf00670684

    DOI

    http://dx.doi.org/10.1007/bf00670684

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1031751299


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Quantum Physics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Mathematical Institute, Slovak Academy of Sciences, SK-814 73, Bratislava, Slovakia", 
              "id": "http://www.grid.ac/institutes/grid.419303.c", 
              "name": [
                "Mathematical Institute, Slovak Academy of Sciences, SK-814 73, Bratislava, Slovakia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dvure\u010denskij", 
            "givenName": "Anatolij", 
            "id": "sg:person.013472631713.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013472631713.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Mathematical Institute, Slovak Academy of Sciences, SK-814 73, Bratislava, Slovakia", 
              "id": "http://www.grid.ac/institutes/grid.419303.c", 
              "name": [
                "Mathematical Institute, Slovak Academy of Sciences, SK-814 73, Bratislava, Slovakia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rie\u010dan", 
            "givenName": "Beloslav", 
            "id": "sg:person.014312461642.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014312461642.04"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-94-015-8222-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031999631", 
              "https://doi.org/10.1007/978-94-015-8222-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00398592", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025178363", 
              "https://doi.org/10.1007/bf00398592"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00678545", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050899565", 
              "https://doi.org/10.1007/bf00678545"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1994-07", 
        "datePublishedReg": "1994-07-01", 
        "description": "We present a general decomposition theorem for elements of an ordered group with respect to a cone. This result enables us to obtain decompositions of finitely additive measures defined on quantum logics, orthoalgebras, or, more generally, on difference posets with values in Dedekind complete lattice ordered groups, with respect to a given cone of measures. In particular, we gain Yosida-Hewitt-type and Lebesgue-type decompositions.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf00670684", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1053677", 
            "issn": [
              "0020-7748", 
              "1572-9575"
            ], 
            "name": "International Journal of Theoretical Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "33"
          }
        ], 
        "keywords": [
          "difference posets", 
          "general decomposition theorem", 
          "Dedekind complete lattice", 
          "decomposition of measures", 
          "decomposition theorem", 
          "additive measures", 
          "quantum logic", 
          "complete lattice", 
          "orthoalgebras", 
          "posets", 
          "theorem", 
          "decomposition", 
          "cone", 
          "respect", 
          "lattice", 
          "measures", 
          "logic", 
          "elements", 
          "results", 
          "values", 
          "types", 
          "group", 
          "cone of measures", 
          "Yosida-Hewitt", 
          "Lebesgue-type decomposition"
        ], 
        "name": "Decompositions of measures on orthoalgebras and difference posets", 
        "pagination": "1387-1402", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1031751299"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf00670684"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf00670684", 
          "https://app.dimensions.ai/details/publication/pub.1031751299"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T17:58", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_224.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf00670684"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00670684'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00670684'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00670684'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00670684'


     

    This table displays all metadata directly associated to this object as RDF triples.

    102 TRIPLES      22 PREDICATES      54 URIs      43 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf00670684 schema:about anzsrc-for:02
    2 anzsrc-for:0206
    3 schema:author N7362d7fd1b154c02ae07f9a3b2256785
    4 schema:citation sg:pub.10.1007/978-94-015-8222-3
    5 sg:pub.10.1007/bf00398592
    6 sg:pub.10.1007/bf00678545
    7 schema:datePublished 1994-07
    8 schema:datePublishedReg 1994-07-01
    9 schema:description We present a general decomposition theorem for elements of an ordered group with respect to a cone. This result enables us to obtain decompositions of finitely additive measures defined on quantum logics, orthoalgebras, or, more generally, on difference posets with values in Dedekind complete lattice ordered groups, with respect to a given cone of measures. In particular, we gain Yosida-Hewitt-type and Lebesgue-type decompositions.
    10 schema:genre article
    11 schema:inLanguage en
    12 schema:isAccessibleForFree false
    13 schema:isPartOf N35bf020099644ac8ae6c17749075940b
    14 Nd826f9345b3342f9b1e029245af8c3e3
    15 sg:journal.1053677
    16 schema:keywords Dedekind complete lattice
    17 Lebesgue-type decomposition
    18 Yosida-Hewitt
    19 additive measures
    20 complete lattice
    21 cone
    22 cone of measures
    23 decomposition
    24 decomposition of measures
    25 decomposition theorem
    26 difference posets
    27 elements
    28 general decomposition theorem
    29 group
    30 lattice
    31 logic
    32 measures
    33 orthoalgebras
    34 posets
    35 quantum logic
    36 respect
    37 results
    38 theorem
    39 types
    40 values
    41 schema:name Decompositions of measures on orthoalgebras and difference posets
    42 schema:pagination 1387-1402
    43 schema:productId N78047e4674534466b3355b6444aad317
    44 Nf20b90329a924b2eb6c87d498957b819
    45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031751299
    46 https://doi.org/10.1007/bf00670684
    47 schema:sdDatePublished 2021-11-01T17:58
    48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    49 schema:sdPublisher N67ee34a53f5a49a492c14f88b964ed28
    50 schema:url https://doi.org/10.1007/bf00670684
    51 sgo:license sg:explorer/license/
    52 sgo:sdDataset articles
    53 rdf:type schema:ScholarlyArticle
    54 N35bf020099644ac8ae6c17749075940b schema:issueNumber 7
    55 rdf:type schema:PublicationIssue
    56 N67ee34a53f5a49a492c14f88b964ed28 schema:name Springer Nature - SN SciGraph project
    57 rdf:type schema:Organization
    58 N7362d7fd1b154c02ae07f9a3b2256785 rdf:first sg:person.013472631713.50
    59 rdf:rest Ncc542c6c7dd94135b9738499c9b10342
    60 N78047e4674534466b3355b6444aad317 schema:name doi
    61 schema:value 10.1007/bf00670684
    62 rdf:type schema:PropertyValue
    63 Ncc542c6c7dd94135b9738499c9b10342 rdf:first sg:person.014312461642.04
    64 rdf:rest rdf:nil
    65 Nd826f9345b3342f9b1e029245af8c3e3 schema:volumeNumber 33
    66 rdf:type schema:PublicationVolume
    67 Nf20b90329a924b2eb6c87d498957b819 schema:name dimensions_id
    68 schema:value pub.1031751299
    69 rdf:type schema:PropertyValue
    70 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    71 schema:name Physical Sciences
    72 rdf:type schema:DefinedTerm
    73 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
    74 schema:name Quantum Physics
    75 rdf:type schema:DefinedTerm
    76 sg:journal.1053677 schema:issn 0020-7748
    77 1572-9575
    78 schema:name International Journal of Theoretical Physics
    79 schema:publisher Springer Nature
    80 rdf:type schema:Periodical
    81 sg:person.013472631713.50 schema:affiliation grid-institutes:grid.419303.c
    82 schema:familyName Dvurečenskij
    83 schema:givenName Anatolij
    84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013472631713.50
    85 rdf:type schema:Person
    86 sg:person.014312461642.04 schema:affiliation grid-institutes:grid.419303.c
    87 schema:familyName Riečan
    88 schema:givenName Beloslav
    89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014312461642.04
    90 rdf:type schema:Person
    91 sg:pub.10.1007/978-94-015-8222-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031999631
    92 https://doi.org/10.1007/978-94-015-8222-3
    93 rdf:type schema:CreativeWork
    94 sg:pub.10.1007/bf00398592 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025178363
    95 https://doi.org/10.1007/bf00398592
    96 rdf:type schema:CreativeWork
    97 sg:pub.10.1007/bf00678545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050899565
    98 https://doi.org/10.1007/bf00678545
    99 rdf:type schema:CreativeWork
    100 grid-institutes:grid.419303.c schema:alternateName Mathematical Institute, Slovak Academy of Sciences, SK-814 73, Bratislava, Slovakia
    101 schema:name Mathematical Institute, Slovak Academy of Sciences, SK-814 73, Bratislava, Slovakia
    102 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...