Quasiclassical Green's function in the BCS pairing theory View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1981-10

AUTHORS

Ulrich Eckern, Albert Schmid

ABSTRACT

We study a generalization of the quasiclassical Green's function which allows us to include the transfer of momentum to the particles. In this approach, we may handle Galilei transformations, rotations, and gauge transformations in a systematic way. As an example, we calculate the quasiparticle flow pattern which arises during the motion of the orbital vector in the ABM phase, and discuss the meaning of the intrinsic angular momentum of the Cooper pairs. Finally, we consider charged particles in a magnetic field, and derive a Boltzmann equation for a superconductor which applies to the Hall effect in the case of moving vortices. More... »

PAGES

137-166

References to SciGraph publications

  • 1980-03. Theory of orbital dynamics of the A phase of superfluid 3He. II. Orbital hydrodynamic equations in JOURNAL OF LOW TEMPERATURE PHYSICS
  • 1978-09. Relaxation processes in superconductors in JOURNAL OF LOW TEMPERATURE PHYSICS
  • 1968-04. Transformation of Gorkov's equation for type II superconductors into transport-like equations in ZEITSCHRIFT FÜR PHYSIK A HADRONS AND NUCLEI
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf00661147

    DOI

    http://dx.doi.org/10.1007/bf00661147

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1013587808


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0105", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0203", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Classical Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Condensed Matter Physics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York", 
              "id": "http://www.grid.ac/institutes/grid.5386.8", 
              "name": [
                "Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Eckern", 
            "givenName": "Ulrich", 
            "id": "sg:person.012657025101.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012657025101.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut fur Theorie der Kondensierten Materie, Universit\u00e4t Karlsruhe, Karlsruhe, West Germany", 
              "id": "http://www.grid.ac/institutes/grid.7892.4", 
              "name": [
                "Institut fur Theorie der Kondensierten Materie, Universit\u00e4t Karlsruhe, Karlsruhe, West Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schmid", 
            "givenName": "Albert", 
            "id": "sg:person.016231521611.77", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016231521611.77"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00056661", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048730260", 
              "https://doi.org/10.1007/bf00056661"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00115497", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026454464", 
              "https://doi.org/10.1007/bf00115497"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01379803", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041571783", 
              "https://doi.org/10.1007/bf01379803"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1981-10", 
        "datePublishedReg": "1981-10-01", 
        "description": "We study a generalization of the quasiclassical Green's function which allows us to include the transfer of momentum to the particles. In this approach, we may handle Galilei transformations, rotations, and gauge transformations in a systematic way. As an example, we calculate the quasiparticle flow pattern which arises during the motion of the orbital vector in the ABM phase, and discuss the meaning of the intrinsic angular momentum of the Cooper pairs. Finally, we consider charged particles in a magnetic field, and derive a Boltzmann equation for a superconductor which applies to the Hall effect in the case of moving vortices.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf00661147", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1030474", 
            "issn": [
              "0022-2291", 
              "1573-7357"
            ], 
            "name": "Journal of Low Temperature Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1-2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "45"
          }
        ], 
        "keywords": [
          "transfer of momentum", 
          "flow patterns", 
          "quasiclassical Green\u2019s functions", 
          "magnetic field", 
          "particles", 
          "Green's function", 
          "Boltzmann equation", 
          "Hall effect", 
          "vortices", 
          "momentum", 
          "superconductors", 
          "motion", 
          "equations", 
          "transfer", 
          "Cooper pairs", 
          "phase", 
          "field", 
          "angular momentum", 
          "transformation", 
          "rotation", 
          "systematic way", 
          "effect", 
          "example", 
          "intrinsic angular momentum", 
          "function", 
          "approach", 
          "theory", 
          "way", 
          "vector", 
          "cases", 
          "Galilei transformations", 
          "pairs", 
          "patterns", 
          "BCS", 
          "generalization", 
          "meaning", 
          "quasiparticle flow pattern", 
          "orbital vectors", 
          "ABM phase"
        ], 
        "name": "Quasiclassical Green's function in the BCS pairing theory", 
        "pagination": "137-166", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1013587808"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf00661147"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf00661147", 
          "https://app.dimensions.ai/details/publication/pub.1013587808"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:02", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_159.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf00661147"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00661147'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00661147'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00661147'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00661147'


     

    This table displays all metadata directly associated to this object as RDF triples.

    131 TRIPLES      22 PREDICATES      71 URIs      57 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf00661147 schema:about anzsrc-for:01
    2 anzsrc-for:0105
    3 anzsrc-for:02
    4 anzsrc-for:0203
    5 anzsrc-for:0204
    6 schema:author Nb39787ad86ba4482be2d2407f219baf1
    7 schema:citation sg:pub.10.1007/bf00056661
    8 sg:pub.10.1007/bf00115497
    9 sg:pub.10.1007/bf01379803
    10 schema:datePublished 1981-10
    11 schema:datePublishedReg 1981-10-01
    12 schema:description We study a generalization of the quasiclassical Green's function which allows us to include the transfer of momentum to the particles. In this approach, we may handle Galilei transformations, rotations, and gauge transformations in a systematic way. As an example, we calculate the quasiparticle flow pattern which arises during the motion of the orbital vector in the ABM phase, and discuss the meaning of the intrinsic angular momentum of the Cooper pairs. Finally, we consider charged particles in a magnetic field, and derive a Boltzmann equation for a superconductor which applies to the Hall effect in the case of moving vortices.
    13 schema:genre article
    14 schema:inLanguage en
    15 schema:isAccessibleForFree true
    16 schema:isPartOf N96fe863d349a4aaf823d76b951afe40c
    17 Ndb3e0c7e6f234c2d9fdea92c781a2741
    18 sg:journal.1030474
    19 schema:keywords ABM phase
    20 BCS
    21 Boltzmann equation
    22 Cooper pairs
    23 Galilei transformations
    24 Green's function
    25 Hall effect
    26 angular momentum
    27 approach
    28 cases
    29 effect
    30 equations
    31 example
    32 field
    33 flow patterns
    34 function
    35 generalization
    36 intrinsic angular momentum
    37 magnetic field
    38 meaning
    39 momentum
    40 motion
    41 orbital vectors
    42 pairs
    43 particles
    44 patterns
    45 phase
    46 quasiclassical Green’s functions
    47 quasiparticle flow pattern
    48 rotation
    49 superconductors
    50 systematic way
    51 theory
    52 transfer
    53 transfer of momentum
    54 transformation
    55 vector
    56 vortices
    57 way
    58 schema:name Quasiclassical Green's function in the BCS pairing theory
    59 schema:pagination 137-166
    60 schema:productId N64ffa4ede78b4276a2884cbf0d1f8d01
    61 Nf310fc6c90534aca8fb5515e5a33b8cf
    62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013587808
    63 https://doi.org/10.1007/bf00661147
    64 schema:sdDatePublished 2022-01-01T18:02
    65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    66 schema:sdPublisher N2eb02b2ef9174708b0342f030c692604
    67 schema:url https://doi.org/10.1007/bf00661147
    68 sgo:license sg:explorer/license/
    69 sgo:sdDataset articles
    70 rdf:type schema:ScholarlyArticle
    71 N00ad02ff2f7e47339abc1cddb7c54dfd rdf:first sg:person.016231521611.77
    72 rdf:rest rdf:nil
    73 N2eb02b2ef9174708b0342f030c692604 schema:name Springer Nature - SN SciGraph project
    74 rdf:type schema:Organization
    75 N64ffa4ede78b4276a2884cbf0d1f8d01 schema:name dimensions_id
    76 schema:value pub.1013587808
    77 rdf:type schema:PropertyValue
    78 N96fe863d349a4aaf823d76b951afe40c schema:volumeNumber 45
    79 rdf:type schema:PublicationVolume
    80 Nb39787ad86ba4482be2d2407f219baf1 rdf:first sg:person.012657025101.49
    81 rdf:rest N00ad02ff2f7e47339abc1cddb7c54dfd
    82 Ndb3e0c7e6f234c2d9fdea92c781a2741 schema:issueNumber 1-2
    83 rdf:type schema:PublicationIssue
    84 Nf310fc6c90534aca8fb5515e5a33b8cf schema:name doi
    85 schema:value 10.1007/bf00661147
    86 rdf:type schema:PropertyValue
    87 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    88 schema:name Mathematical Sciences
    89 rdf:type schema:DefinedTerm
    90 anzsrc-for:0105 schema:inDefinedTermSet anzsrc-for:
    91 schema:name Mathematical Physics
    92 rdf:type schema:DefinedTerm
    93 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    94 schema:name Physical Sciences
    95 rdf:type schema:DefinedTerm
    96 anzsrc-for:0203 schema:inDefinedTermSet anzsrc-for:
    97 schema:name Classical Physics
    98 rdf:type schema:DefinedTerm
    99 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
    100 schema:name Condensed Matter Physics
    101 rdf:type schema:DefinedTerm
    102 sg:journal.1030474 schema:issn 0022-2291
    103 1573-7357
    104 schema:name Journal of Low Temperature Physics
    105 schema:publisher Springer Nature
    106 rdf:type schema:Periodical
    107 sg:person.012657025101.49 schema:affiliation grid-institutes:grid.5386.8
    108 schema:familyName Eckern
    109 schema:givenName Ulrich
    110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012657025101.49
    111 rdf:type schema:Person
    112 sg:person.016231521611.77 schema:affiliation grid-institutes:grid.7892.4
    113 schema:familyName Schmid
    114 schema:givenName Albert
    115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016231521611.77
    116 rdf:type schema:Person
    117 sg:pub.10.1007/bf00056661 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048730260
    118 https://doi.org/10.1007/bf00056661
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1007/bf00115497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026454464
    121 https://doi.org/10.1007/bf00115497
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1007/bf01379803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041571783
    124 https://doi.org/10.1007/bf01379803
    125 rdf:type schema:CreativeWork
    126 grid-institutes:grid.5386.8 schema:alternateName Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York
    127 schema:name Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York
    128 rdf:type schema:Organization
    129 grid-institutes:grid.7892.4 schema:alternateName Institut fur Theorie der Kondensierten Materie, Universität Karlsruhe, Karlsruhe, West Germany
    130 schema:name Institut fur Theorie der Kondensierten Materie, Universität Karlsruhe, Karlsruhe, West Germany
    131 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...