Ontology type: schema:ScholarlyArticle
1981-09
AUTHORSJ. Goulon, C. Goulon-Ginet, M. Chabanel
ABSTRACTEXAFS spectroscopy has been shown to be a reliable tool for detecting the formation in solutions of molecular associations (LiBr)n where n is solvent dependent. The signal Br*...Br observed at 3.87 Å confirms the formation of tetrameric species (n=4) in diethylether (Et2O) but only of dimers (n=2) in diethylcarbonate. Another signal observed at 2.45 Å has·been attributed to the pair Br*...Li. The study of Li2MBr4−Et2O solutions (M=Co, Cu, Zn) also affords new evidence for the formation of complex anions MBr4′2− but the spectra obtained at the bromine or metalK-edges for LiZnBr3−Et2O solutions seems to indicate the formation of more complex aggregates (LiMBr3)q. While the signal of the shell Br*...Br is found quite intense for the reference CBr4−Et2O system, it does not appear for the MBr42− complex except for CuBr42− where the Jahn-Teller effect might rigidify a distorted tetrahedral structure. More... »
PAGES649-672
http://scigraph.springernature.com/pub.10.1007/bf00650740
DOIhttp://dx.doi.org/10.1007/bf00650740
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1047413617
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Chemical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Chemistry (incl. Structural)",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Laboratoire pour l'Utilisation du Rayonnement Electromagnetique, Laboratoire Propre du CNRS, Associ\u00e9 \u00e0 l'Universit\u00e9 de Paris Sud-Orsay, B\u00e2timent 209C, 91405, Orsay, France",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Laboratoire de Chimie Th\u00e9orique, Universit\u00e9 de NANCY I, 54137, Nancy, France",
"Laboratoire pour l'Utilisation du Rayonnement Electromagnetique, Laboratoire Propre du CNRS, Associ\u00e9 \u00e0 l'Universit\u00e9 de Paris Sud-Orsay, B\u00e2timent 209C, 91405, Orsay, France"
],
"type": "Organization"
},
"familyName": "Goulon",
"givenName": "J.",
"id": "sg:person.0647036243.35",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647036243.35"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Laboratoire pour l'Utilisation du Rayonnement Electromagnetique, Laboratoire Propre du CNRS, Associ\u00e9 \u00e0 l'Universit\u00e9 de Paris Sud-Orsay, B\u00e2timent 209C, 91405, Orsay, France",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Laboratoire de Chimie Th\u00e9orique, Universit\u00e9 de NANCY I, 54137, Nancy, France",
"Laboratoire pour l'Utilisation du Rayonnement Electromagnetique, Laboratoire Propre du CNRS, Associ\u00e9 \u00e0 l'Universit\u00e9 de Paris Sud-Orsay, B\u00e2timent 209C, 91405, Orsay, France"
],
"type": "Organization"
},
"familyName": "Goulon-Ginet",
"givenName": "C.",
"id": "sg:person.016445317042.41",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016445317042.41"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Laboratoire de Spectrochimie des Ions, Universit\u00e9 de Nantes-2, Rue de la Houssini\u00e8re, 44072, Nantes, France",
"id": "http://www.grid.ac/institutes/grid.4817.a",
"name": [
"Laboratoire de Spectrochimie des Ions, Universit\u00e9 de Nantes-2, Rue de la Houssini\u00e8re, 44072, Nantes, France"
],
"type": "Organization"
},
"familyName": "Chabanel",
"givenName": "M.",
"id": "sg:person.014726277515.61",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014726277515.61"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf01339581",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014422184",
"https://doi.org/10.1007/bf01339581"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00529392",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026197985",
"https://doi.org/10.1007/bf00529392"
],
"type": "CreativeWork"
}
],
"datePublished": "1981-09",
"datePublishedReg": "1981-09-01",
"description": "EXAFS spectroscopy has been shown to be a reliable tool for detecting the formation in solutions of molecular associations (LiBr)n where n is solvent dependent. The signal Br*...Br observed at 3.87 \u00c5 confirms the formation of tetrameric species (n=4) in diethylether (Et2O) but only of dimers (n=2) in diethylcarbonate. Another signal observed at 2.45 \u00c5 has\u00b7been attributed to the pair Br*...Li. The study of Li2MBr4\u2212Et2O solutions (M=Co, Cu, Zn) also affords new evidence for the formation of complex anions MBr4\u20322\u2212 but the spectra obtained at the bromine or metalK-edges for LiZnBr3\u2212Et2O solutions seems to indicate the formation of more complex aggregates (LiMBr3)q. While the signal of the shell Br*...Br is found quite intense for the reference CBr4\u2212Et2O system, it does not appear for the MBr42\u2212 complex except for CuBr42\u2212 where the Jahn-Teller effect might rigidify a distorted tetrahedral structure.",
"genre": "article",
"id": "sg:pub.10.1007/bf00650740",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1015946",
"issn": [
"0095-9782",
"1572-8927"
],
"name": "Journal of Solution Chemistry",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "9",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "10"
}
],
"keywords": [
"complex anions",
"EXAFS spectroscopy",
"distorted tetrahedral structure",
"tetrahedral structure",
"Jahn-Teller effect",
"tetrameric species",
"molecular association",
"complex aggregates",
"multimeric species",
"anions",
"spectroscopy",
"Br",
"diethylether",
"diethylcarbonate",
"formation",
"solvent",
"solution",
"bromine",
"complexes",
"dimer",
"spectra",
"aggregates",
"species",
"structure",
"detection",
"effect",
"reliable tool",
"signals",
"system",
"study",
"tool",
"reference",
"evidence",
"new evidence",
"association"
],
"name": "On the detection by EXAFS spectroscopy of multimeric species and of complex anions in diethylether and diethylcarbonate",
"pagination": "649-672",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1047413617"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/bf00650740"
]
}
],
"sameAs": [
"https://doi.org/10.1007/bf00650740",
"https://app.dimensions.ai/details/publication/pub.1047413617"
],
"sdDataset": "articles",
"sdDatePublished": "2022-06-01T21:58",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_171.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/bf00650740"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00650740'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00650740'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00650740'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00650740'
This table displays all metadata directly associated to this object as RDF triples.
119 TRIPLES
22 PREDICATES
63 URIs
53 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/bf00650740 | schema:about | anzsrc-for:03 |
2 | ″ | ″ | anzsrc-for:0306 |
3 | ″ | schema:author | N35038156aa95415b9fdc91a096d6de2c |
4 | ″ | schema:citation | sg:pub.10.1007/bf00529392 |
5 | ″ | ″ | sg:pub.10.1007/bf01339581 |
6 | ″ | schema:datePublished | 1981-09 |
7 | ″ | schema:datePublishedReg | 1981-09-01 |
8 | ″ | schema:description | EXAFS spectroscopy has been shown to be a reliable tool for detecting the formation in solutions of molecular associations (LiBr)n where n is solvent dependent. The signal Br*...Br observed at 3.87 Å confirms the formation of tetrameric species (n=4) in diethylether (Et2O) but only of dimers (n=2) in diethylcarbonate. Another signal observed at 2.45 Å has·been attributed to the pair Br*...Li. The study of Li2MBr4−Et2O solutions (M=Co, Cu, Zn) also affords new evidence for the formation of complex anions MBr4′2− but the spectra obtained at the bromine or metalK-edges for LiZnBr3−Et2O solutions seems to indicate the formation of more complex aggregates (LiMBr3)q. While the signal of the shell Br*...Br is found quite intense for the reference CBr4−Et2O system, it does not appear for the MBr42− complex except for CuBr42− where the Jahn-Teller effect might rigidify a distorted tetrahedral structure. |
9 | ″ | schema:genre | article |
10 | ″ | schema:inLanguage | en |
11 | ″ | schema:isAccessibleForFree | false |
12 | ″ | schema:isPartOf | Nab8b9936802248a5993f2276257e0e98 |
13 | ″ | ″ | Nebe57e42799a4873bc326985f25cb0c8 |
14 | ″ | ″ | sg:journal.1015946 |
15 | ″ | schema:keywords | Br |
16 | ″ | ″ | EXAFS spectroscopy |
17 | ″ | ″ | Jahn-Teller effect |
18 | ″ | ″ | aggregates |
19 | ″ | ″ | anions |
20 | ″ | ″ | association |
21 | ″ | ″ | bromine |
22 | ″ | ″ | complex aggregates |
23 | ″ | ″ | complex anions |
24 | ″ | ″ | complexes |
25 | ″ | ″ | detection |
26 | ″ | ″ | diethylcarbonate |
27 | ″ | ″ | diethylether |
28 | ″ | ″ | dimer |
29 | ″ | ″ | distorted tetrahedral structure |
30 | ″ | ″ | effect |
31 | ″ | ″ | evidence |
32 | ″ | ″ | formation |
33 | ″ | ″ | molecular association |
34 | ″ | ″ | multimeric species |
35 | ″ | ″ | new evidence |
36 | ″ | ″ | reference |
37 | ″ | ″ | reliable tool |
38 | ″ | ″ | signals |
39 | ″ | ″ | solution |
40 | ″ | ″ | solvent |
41 | ″ | ″ | species |
42 | ″ | ″ | spectra |
43 | ″ | ″ | spectroscopy |
44 | ″ | ″ | structure |
45 | ″ | ″ | study |
46 | ″ | ″ | system |
47 | ″ | ″ | tetrahedral structure |
48 | ″ | ″ | tetrameric species |
49 | ″ | ″ | tool |
50 | ″ | schema:name | On the detection by EXAFS spectroscopy of multimeric species and of complex anions in diethylether and diethylcarbonate |
51 | ″ | schema:pagination | 649-672 |
52 | ″ | schema:productId | N539e2381deaf422a95c90e49f257241b |
53 | ″ | ″ | Nb94519510e3f4224afe89ca42b4bab66 |
54 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1047413617 |
55 | ″ | ″ | https://doi.org/10.1007/bf00650740 |
56 | ″ | schema:sdDatePublished | 2022-06-01T21:58 |
57 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
58 | ″ | schema:sdPublisher | N641a25a9cb5842caaddbcb484382ea4b |
59 | ″ | schema:url | https://doi.org/10.1007/bf00650740 |
60 | ″ | sgo:license | sg:explorer/license/ |
61 | ″ | sgo:sdDataset | articles |
62 | ″ | rdf:type | schema:ScholarlyArticle |
63 | N0231fc87e7a24025ab669b82519bdac7 | rdf:first | sg:person.016445317042.41 |
64 | ″ | rdf:rest | N2287b03b3803417d8f10c20f54e05c73 |
65 | N2287b03b3803417d8f10c20f54e05c73 | rdf:first | sg:person.014726277515.61 |
66 | ″ | rdf:rest | rdf:nil |
67 | N35038156aa95415b9fdc91a096d6de2c | rdf:first | sg:person.0647036243.35 |
68 | ″ | rdf:rest | N0231fc87e7a24025ab669b82519bdac7 |
69 | N539e2381deaf422a95c90e49f257241b | schema:name | doi |
70 | ″ | schema:value | 10.1007/bf00650740 |
71 | ″ | rdf:type | schema:PropertyValue |
72 | N641a25a9cb5842caaddbcb484382ea4b | schema:name | Springer Nature - SN SciGraph project |
73 | ″ | rdf:type | schema:Organization |
74 | Nab8b9936802248a5993f2276257e0e98 | schema:volumeNumber | 10 |
75 | ″ | rdf:type | schema:PublicationVolume |
76 | Nb94519510e3f4224afe89ca42b4bab66 | schema:name | dimensions_id |
77 | ″ | schema:value | pub.1047413617 |
78 | ″ | rdf:type | schema:PropertyValue |
79 | Nebe57e42799a4873bc326985f25cb0c8 | schema:issueNumber | 9 |
80 | ″ | rdf:type | schema:PublicationIssue |
81 | anzsrc-for:03 | schema:inDefinedTermSet | anzsrc-for: |
82 | ″ | schema:name | Chemical Sciences |
83 | ″ | rdf:type | schema:DefinedTerm |
84 | anzsrc-for:0306 | schema:inDefinedTermSet | anzsrc-for: |
85 | ″ | schema:name | Physical Chemistry (incl. Structural) |
86 | ″ | rdf:type | schema:DefinedTerm |
87 | sg:journal.1015946 | schema:issn | 0095-9782 |
88 | ″ | ″ | 1572-8927 |
89 | ″ | schema:name | Journal of Solution Chemistry |
90 | ″ | schema:publisher | Springer Nature |
91 | ″ | rdf:type | schema:Periodical |
92 | sg:person.014726277515.61 | schema:affiliation | grid-institutes:grid.4817.a |
93 | ″ | schema:familyName | Chabanel |
94 | ″ | schema:givenName | M. |
95 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014726277515.61 |
96 | ″ | rdf:type | schema:Person |
97 | sg:person.016445317042.41 | schema:affiliation | grid-institutes:None |
98 | ″ | schema:familyName | Goulon-Ginet |
99 | ″ | schema:givenName | C. |
100 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016445317042.41 |
101 | ″ | rdf:type | schema:Person |
102 | sg:person.0647036243.35 | schema:affiliation | grid-institutes:None |
103 | ″ | schema:familyName | Goulon |
104 | ″ | schema:givenName | J. |
105 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647036243.35 |
106 | ″ | rdf:type | schema:Person |
107 | sg:pub.10.1007/bf00529392 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1026197985 |
108 | ″ | ″ | https://doi.org/10.1007/bf00529392 |
109 | ″ | rdf:type | schema:CreativeWork |
110 | sg:pub.10.1007/bf01339581 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1014422184 |
111 | ″ | ″ | https://doi.org/10.1007/bf01339581 |
112 | ″ | rdf:type | schema:CreativeWork |
113 | grid-institutes:None | schema:alternateName | Laboratoire pour l'Utilisation du Rayonnement Electromagnetique, Laboratoire Propre du CNRS, Associé à l'Université de Paris Sud-Orsay, Bâtiment 209C, 91405, Orsay, France |
114 | ″ | schema:name | Laboratoire de Chimie Théorique, Université de NANCY I, 54137, Nancy, France |
115 | ″ | ″ | Laboratoire pour l'Utilisation du Rayonnement Electromagnetique, Laboratoire Propre du CNRS, Associé à l'Université de Paris Sud-Orsay, Bâtiment 209C, 91405, Orsay, France |
116 | ″ | rdf:type | schema:Organization |
117 | grid-institutes:grid.4817.a | schema:alternateName | Laboratoire de Spectrochimie des Ions, Université de Nantes-2, Rue de la Houssinière, 44072, Nantes, France |
118 | ″ | schema:name | Laboratoire de Spectrochimie des Ions, Université de Nantes-2, Rue de la Houssinière, 44072, Nantes, France |
119 | ″ | rdf:type | schema:Organization |