Generalized Taylor-Aris moment analysis of the transport of sorbing solutes through porous media with spatially-periodic retardation factor View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1992-02

AUTHORS

Constantinos V. Chrysikopoulos, Peter K. Kitanidis, Paul V. Roberts

ABSTRACT

Taylor-Aris dispersion theory, as generalized by Brenner, is employed to investigate the macroscopic behavior of sorbing solute transport in a three-dimensional, hydraulically homogeneous porous medium under steady, unidirectional flow. The porous medium is considered to possess spatially periodic geochemical characteristics in all three directions, where the spatial periods define a rectangular parallelepiped or a unit-element. The spatially-variable geochemical parameters of the solid matrix are incorporated into the transport equation by a spatially-periodic distribution coefficient and consequently a spatially-periodic retardation factor. Expressions for the effective or large-time coefficients governing the macroscopic solute transport are derived for solute sorbing according to a linear equilibrium isotherm as well as for the case of a first-order kinetic sorption relationship. The results indicate that for the case of a chemical equilibrium sorption isotherm the longitudinal macrodispersion incorporates a second term that accounts for the eflect of averaging the distribution coefficient over the volume of a unit element. Furthermore, for the case of a kinetic sorption relation, the longitudinal macrodispersion expression includes a third term that accounts for the effect of the first-order sorption rate. Therefore, increased solute spreading is expected if the local chemical equilibrium assumption is not valid. The derived expressions of the apparent parameters governing the macroscopic solute transport under local equilibrium conditions agreed reasonably with the results of numerical computations using particle tracking techniques. More... »

PAGES

163-185

References to SciGraph publications

  • 1988. The Random Walk Method in Pollutant Transport Simulation in GROUNDWATER FLOW AND QUALITY MODELLING
  • 1989. Flow and Transport in Porous Formations in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf00647395

    DOI

    http://dx.doi.org/10.1007/bf00647395

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1018610251


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0914", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Resources Engineering and Extractive Metallurgy", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Civil Engineering, Stanford University, 94305-4020, Stanford, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.168010.e", 
              "name": [
                "Department of Civil Engineering, Stanford University, 94305-4020, Stanford, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chrysikopoulos", 
            "givenName": "Constantinos V.", 
            "id": "sg:person.016127725611.77", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016127725611.77"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Civil Engineering, Stanford University, 94305-4020, Stanford, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.168010.e", 
              "name": [
                "Department of Civil Engineering, Stanford University, 94305-4020, Stanford, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kitanidis", 
            "givenName": "Peter K.", 
            "id": "sg:person.01176406127.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176406127.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Civil Engineering, Stanford University, 94305-4020, Stanford, CA, USA", 
              "id": "http://www.grid.ac/institutes/grid.168010.e", 
              "name": [
                "Department of Civil Engineering, Stanford University, 94305-4020, Stanford, CA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Roberts", 
            "givenName": "Paul V.", 
            "id": "sg:person.0776421673.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776421673.00"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-642-75015-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019196658", 
              "https://doi.org/10.1007/978-3-642-75015-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-009-2889-3_15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036103115", 
              "https://doi.org/10.1007/978-94-009-2889-3_15"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1992-02", 
        "datePublishedReg": "1992-02-01", 
        "description": "Taylor-Aris dispersion theory, as generalized by Brenner, is employed to investigate the macroscopic behavior of sorbing solute transport in a three-dimensional, hydraulically homogeneous porous medium under steady, unidirectional flow. The porous medium is considered to possess spatially periodic geochemical characteristics in all three directions, where the spatial periods define a rectangular parallelepiped or a unit-element. The spatially-variable geochemical parameters of the solid matrix are incorporated into the transport equation by a spatially-periodic distribution coefficient and consequently a spatially-periodic retardation factor. Expressions for the effective or large-time coefficients governing the macroscopic solute transport are derived for solute sorbing according to a linear equilibrium isotherm as well as for the case of a first-order kinetic sorption relationship. The results indicate that for the case of a chemical equilibrium sorption isotherm the longitudinal macrodispersion incorporates a second term that accounts for the eflect of averaging the distribution coefficient over the volume of a unit element. Furthermore, for the case of a kinetic sorption relation, the longitudinal macrodispersion expression includes a third term that accounts for the effect of the first-order sorption rate. Therefore, increased solute spreading is expected if the local chemical equilibrium assumption is not valid. The derived expressions of the apparent parameters governing the macroscopic solute transport under local equilibrium conditions agreed reasonably with the results of numerical computations using particle tracking techniques.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf00647395", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1050641", 
            "issn": [
              "0169-3913", 
              "1573-1634"
            ], 
            "name": "Transport in Porous Media", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "7"
          }
        ], 
        "keywords": [
          "porous media", 
          "solute transport", 
          "particle tracking technique", 
          "homogeneous porous media", 
          "local chemical equilibrium assumption", 
          "chemical equilibrium assumption", 
          "retardation factor", 
          "solute spreading", 
          "local equilibrium conditions", 
          "linear equilibrium isotherm", 
          "macroscopic behavior", 
          "distribution coefficients", 
          "transport equation", 
          "solid matrix", 
          "equilibrium isotherms", 
          "Taylor-Aris dispersion theory", 
          "tracking technique", 
          "unidirectional flow", 
          "sorption rate", 
          "equilibrium assumption", 
          "numerical computations", 
          "spatial period", 
          "longitudinal macrodispersion", 
          "equilibrium conditions", 
          "equilibrium sorption", 
          "unit element", 
          "coefficient", 
          "transport", 
          "apparent parameters", 
          "parameters", 
          "macrodispersion", 
          "isotherms", 
          "flow", 
          "sorption", 
          "moment analysis", 
          "dispersion theory", 
          "matrix", 
          "equations", 
          "sorbing", 
          "results", 
          "behavior", 
          "medium", 
          "second term", 
          "solutes", 
          "characteristics", 
          "direction", 
          "spreading", 
          "technique", 
          "terms", 
          "conditions", 
          "computation", 
          "elements", 
          "third term", 
          "volume", 
          "cases", 
          "effect", 
          "rate", 
          "assumption", 
          "analysis", 
          "theory", 
          "factors", 
          "geochemical parameters", 
          "Brenner", 
          "relation", 
          "eflect", 
          "period", 
          "relationship", 
          "expression", 
          "geochemical characteristics"
        ], 
        "name": "Generalized Taylor-Aris moment analysis of the transport of sorbing solutes through porous media with spatially-periodic retardation factor", 
        "pagination": "163-185", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1018610251"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf00647395"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf00647395", 
          "https://app.dimensions.ai/details/publication/pub.1018610251"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-10T09:47", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_257.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf00647395"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00647395'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00647395'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00647395'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00647395'


     

    This table displays all metadata directly associated to this object as RDF triples.

    149 TRIPLES      22 PREDICATES      97 URIs      87 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf00647395 schema:about anzsrc-for:09
    2 anzsrc-for:0914
    3 schema:author Nab88dccf06a04774b27c13b793ea53ec
    4 schema:citation sg:pub.10.1007/978-3-642-75015-1
    5 sg:pub.10.1007/978-94-009-2889-3_15
    6 schema:datePublished 1992-02
    7 schema:datePublishedReg 1992-02-01
    8 schema:description Taylor-Aris dispersion theory, as generalized by Brenner, is employed to investigate the macroscopic behavior of sorbing solute transport in a three-dimensional, hydraulically homogeneous porous medium under steady, unidirectional flow. The porous medium is considered to possess spatially periodic geochemical characteristics in all three directions, where the spatial periods define a rectangular parallelepiped or a unit-element. The spatially-variable geochemical parameters of the solid matrix are incorporated into the transport equation by a spatially-periodic distribution coefficient and consequently a spatially-periodic retardation factor. Expressions for the effective or large-time coefficients governing the macroscopic solute transport are derived for solute sorbing according to a linear equilibrium isotherm as well as for the case of a first-order kinetic sorption relationship. The results indicate that for the case of a chemical equilibrium sorption isotherm the longitudinal macrodispersion incorporates a second term that accounts for the eflect of averaging the distribution coefficient over the volume of a unit element. Furthermore, for the case of a kinetic sorption relation, the longitudinal macrodispersion expression includes a third term that accounts for the effect of the first-order sorption rate. Therefore, increased solute spreading is expected if the local chemical equilibrium assumption is not valid. The derived expressions of the apparent parameters governing the macroscopic solute transport under local equilibrium conditions agreed reasonably with the results of numerical computations using particle tracking techniques.
    9 schema:genre article
    10 schema:inLanguage en
    11 schema:isAccessibleForFree false
    12 schema:isPartOf N250d0980cf184dea93400a07026b51a3
    13 N5db67bc0786d450ebb6c4d252f9210d1
    14 sg:journal.1050641
    15 schema:keywords Brenner
    16 Taylor-Aris dispersion theory
    17 analysis
    18 apparent parameters
    19 assumption
    20 behavior
    21 cases
    22 characteristics
    23 chemical equilibrium assumption
    24 coefficient
    25 computation
    26 conditions
    27 direction
    28 dispersion theory
    29 distribution coefficients
    30 effect
    31 eflect
    32 elements
    33 equations
    34 equilibrium assumption
    35 equilibrium conditions
    36 equilibrium isotherms
    37 equilibrium sorption
    38 expression
    39 factors
    40 flow
    41 geochemical characteristics
    42 geochemical parameters
    43 homogeneous porous media
    44 isotherms
    45 linear equilibrium isotherm
    46 local chemical equilibrium assumption
    47 local equilibrium conditions
    48 longitudinal macrodispersion
    49 macrodispersion
    50 macroscopic behavior
    51 matrix
    52 medium
    53 moment analysis
    54 numerical computations
    55 parameters
    56 particle tracking technique
    57 period
    58 porous media
    59 rate
    60 relation
    61 relationship
    62 results
    63 retardation factor
    64 second term
    65 solid matrix
    66 solute spreading
    67 solute transport
    68 solutes
    69 sorbing
    70 sorption
    71 sorption rate
    72 spatial period
    73 spreading
    74 technique
    75 terms
    76 theory
    77 third term
    78 tracking technique
    79 transport
    80 transport equation
    81 unidirectional flow
    82 unit element
    83 volume
    84 schema:name Generalized Taylor-Aris moment analysis of the transport of sorbing solutes through porous media with spatially-periodic retardation factor
    85 schema:pagination 163-185
    86 schema:productId N120dd497f1704c9f999844b8741d8687
    87 N7c6c0bd5d13f4c3989c01592b1b2c56d
    88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018610251
    89 https://doi.org/10.1007/bf00647395
    90 schema:sdDatePublished 2022-05-10T09:47
    91 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    92 schema:sdPublisher Nccc028db561648e6b3f3a9270bebabb0
    93 schema:url https://doi.org/10.1007/bf00647395
    94 sgo:license sg:explorer/license/
    95 sgo:sdDataset articles
    96 rdf:type schema:ScholarlyArticle
    97 N120dd497f1704c9f999844b8741d8687 schema:name dimensions_id
    98 schema:value pub.1018610251
    99 rdf:type schema:PropertyValue
    100 N250d0980cf184dea93400a07026b51a3 schema:volumeNumber 7
    101 rdf:type schema:PublicationVolume
    102 N5115c83365d34c529ab401b52528e7d1 rdf:first sg:person.01176406127.37
    103 rdf:rest Nb7cc8caf53864fd595845fa904d32e0b
    104 N5db67bc0786d450ebb6c4d252f9210d1 schema:issueNumber 2
    105 rdf:type schema:PublicationIssue
    106 N7c6c0bd5d13f4c3989c01592b1b2c56d schema:name doi
    107 schema:value 10.1007/bf00647395
    108 rdf:type schema:PropertyValue
    109 Nab88dccf06a04774b27c13b793ea53ec rdf:first sg:person.016127725611.77
    110 rdf:rest N5115c83365d34c529ab401b52528e7d1
    111 Nb7cc8caf53864fd595845fa904d32e0b rdf:first sg:person.0776421673.00
    112 rdf:rest rdf:nil
    113 Nccc028db561648e6b3f3a9270bebabb0 schema:name Springer Nature - SN SciGraph project
    114 rdf:type schema:Organization
    115 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    116 schema:name Engineering
    117 rdf:type schema:DefinedTerm
    118 anzsrc-for:0914 schema:inDefinedTermSet anzsrc-for:
    119 schema:name Resources Engineering and Extractive Metallurgy
    120 rdf:type schema:DefinedTerm
    121 sg:journal.1050641 schema:issn 0169-3913
    122 1573-1634
    123 schema:name Transport in Porous Media
    124 schema:publisher Springer Nature
    125 rdf:type schema:Periodical
    126 sg:person.01176406127.37 schema:affiliation grid-institutes:grid.168010.e
    127 schema:familyName Kitanidis
    128 schema:givenName Peter K.
    129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176406127.37
    130 rdf:type schema:Person
    131 sg:person.016127725611.77 schema:affiliation grid-institutes:grid.168010.e
    132 schema:familyName Chrysikopoulos
    133 schema:givenName Constantinos V.
    134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016127725611.77
    135 rdf:type schema:Person
    136 sg:person.0776421673.00 schema:affiliation grid-institutes:grid.168010.e
    137 schema:familyName Roberts
    138 schema:givenName Paul V.
    139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776421673.00
    140 rdf:type schema:Person
    141 sg:pub.10.1007/978-3-642-75015-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019196658
    142 https://doi.org/10.1007/978-3-642-75015-1
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1007/978-94-009-2889-3_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036103115
    145 https://doi.org/10.1007/978-94-009-2889-3_15
    146 rdf:type schema:CreativeWork
    147 grid-institutes:grid.168010.e schema:alternateName Department of Civil Engineering, Stanford University, 94305-4020, Stanford, CA, USA
    148 schema:name Department of Civil Engineering, Stanford University, 94305-4020, Stanford, CA, USA
    149 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...