Ontology type: schema:ScholarlyArticle
1992-02
AUTHORSConstantinos V. Chrysikopoulos, Peter K. Kitanidis, Paul V. Roberts
ABSTRACTTaylor-Aris dispersion theory, as generalized by Brenner, is employed to investigate the macroscopic behavior of sorbing solute transport in a three-dimensional, hydraulically homogeneous porous medium under steady, unidirectional flow. The porous medium is considered to possess spatially periodic geochemical characteristics in all three directions, where the spatial periods define a rectangular parallelepiped or a unit-element. The spatially-variable geochemical parameters of the solid matrix are incorporated into the transport equation by a spatially-periodic distribution coefficient and consequently a spatially-periodic retardation factor. Expressions for the effective or large-time coefficients governing the macroscopic solute transport are derived for solute sorbing according to a linear equilibrium isotherm as well as for the case of a first-order kinetic sorption relationship. The results indicate that for the case of a chemical equilibrium sorption isotherm the longitudinal macrodispersion incorporates a second term that accounts for the eflect of averaging the distribution coefficient over the volume of a unit element. Furthermore, for the case of a kinetic sorption relation, the longitudinal macrodispersion expression includes a third term that accounts for the effect of the first-order sorption rate. Therefore, increased solute spreading is expected if the local chemical equilibrium assumption is not valid. The derived expressions of the apparent parameters governing the macroscopic solute transport under local equilibrium conditions agreed reasonably with the results of numerical computations using particle tracking techniques. More... »
PAGES163-185
http://scigraph.springernature.com/pub.10.1007/bf00647395
DOIhttp://dx.doi.org/10.1007/bf00647395
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1018610251
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0914",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Resources Engineering and Extractive Metallurgy",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Civil Engineering, Stanford University, 94305-4020, Stanford, CA, USA",
"id": "http://www.grid.ac/institutes/grid.168010.e",
"name": [
"Department of Civil Engineering, Stanford University, 94305-4020, Stanford, CA, USA"
],
"type": "Organization"
},
"familyName": "Chrysikopoulos",
"givenName": "Constantinos V.",
"id": "sg:person.016127725611.77",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016127725611.77"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Civil Engineering, Stanford University, 94305-4020, Stanford, CA, USA",
"id": "http://www.grid.ac/institutes/grid.168010.e",
"name": [
"Department of Civil Engineering, Stanford University, 94305-4020, Stanford, CA, USA"
],
"type": "Organization"
},
"familyName": "Kitanidis",
"givenName": "Peter K.",
"id": "sg:person.01176406127.37",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176406127.37"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Civil Engineering, Stanford University, 94305-4020, Stanford, CA, USA",
"id": "http://www.grid.ac/institutes/grid.168010.e",
"name": [
"Department of Civil Engineering, Stanford University, 94305-4020, Stanford, CA, USA"
],
"type": "Organization"
},
"familyName": "Roberts",
"givenName": "Paul V.",
"id": "sg:person.0776421673.00",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776421673.00"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/978-3-642-75015-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019196658",
"https://doi.org/10.1007/978-3-642-75015-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-94-009-2889-3_15",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036103115",
"https://doi.org/10.1007/978-94-009-2889-3_15"
],
"type": "CreativeWork"
}
],
"datePublished": "1992-02",
"datePublishedReg": "1992-02-01",
"description": "Taylor-Aris dispersion theory, as generalized by Brenner, is employed to investigate the macroscopic behavior of sorbing solute transport in a three-dimensional, hydraulically homogeneous porous medium under steady, unidirectional flow. The porous medium is considered to possess spatially periodic geochemical characteristics in all three directions, where the spatial periods define a rectangular parallelepiped or a unit-element. The spatially-variable geochemical parameters of the solid matrix are incorporated into the transport equation by a spatially-periodic distribution coefficient and consequently a spatially-periodic retardation factor. Expressions for the effective or large-time coefficients governing the macroscopic solute transport are derived for solute sorbing according to a linear equilibrium isotherm as well as for the case of a first-order kinetic sorption relationship. The results indicate that for the case of a chemical equilibrium sorption isotherm the longitudinal macrodispersion incorporates a second term that accounts for the eflect of averaging the distribution coefficient over the volume of a unit element. Furthermore, for the case of a kinetic sorption relation, the longitudinal macrodispersion expression includes a third term that accounts for the effect of the first-order sorption rate. Therefore, increased solute spreading is expected if the local chemical equilibrium assumption is not valid. The derived expressions of the apparent parameters governing the macroscopic solute transport under local equilibrium conditions agreed reasonably with the results of numerical computations using particle tracking techniques.",
"genre": "article",
"id": "sg:pub.10.1007/bf00647395",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1050641",
"issn": [
"0169-3913",
"1573-1634"
],
"name": "Transport in Porous Media",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "7"
}
],
"keywords": [
"porous media",
"solute transport",
"particle tracking technique",
"homogeneous porous media",
"local chemical equilibrium assumption",
"chemical equilibrium assumption",
"retardation factor",
"solute spreading",
"local equilibrium conditions",
"linear equilibrium isotherm",
"macroscopic behavior",
"distribution coefficients",
"transport equation",
"solid matrix",
"equilibrium isotherms",
"Taylor-Aris dispersion theory",
"tracking technique",
"unidirectional flow",
"sorption rate",
"equilibrium assumption",
"numerical computations",
"spatial period",
"longitudinal macrodispersion",
"equilibrium conditions",
"equilibrium sorption",
"unit element",
"coefficient",
"transport",
"apparent parameters",
"parameters",
"macrodispersion",
"isotherms",
"flow",
"sorption",
"moment analysis",
"dispersion theory",
"matrix",
"equations",
"sorbing",
"results",
"behavior",
"medium",
"second term",
"solutes",
"characteristics",
"direction",
"spreading",
"technique",
"terms",
"conditions",
"computation",
"elements",
"third term",
"volume",
"cases",
"effect",
"rate",
"assumption",
"analysis",
"theory",
"factors",
"geochemical parameters",
"Brenner",
"relation",
"eflect",
"period",
"relationship",
"expression",
"geochemical characteristics"
],
"name": "Generalized Taylor-Aris moment analysis of the transport of sorbing solutes through porous media with spatially-periodic retardation factor",
"pagination": "163-185",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1018610251"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/bf00647395"
]
}
],
"sameAs": [
"https://doi.org/10.1007/bf00647395",
"https://app.dimensions.ai/details/publication/pub.1018610251"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T09:47",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_257.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/bf00647395"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00647395'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00647395'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00647395'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00647395'
This table displays all metadata directly associated to this object as RDF triples.
149 TRIPLES
22 PREDICATES
97 URIs
87 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/bf00647395 | schema:about | anzsrc-for:09 |
2 | ″ | ″ | anzsrc-for:0914 |
3 | ″ | schema:author | Nab88dccf06a04774b27c13b793ea53ec |
4 | ″ | schema:citation | sg:pub.10.1007/978-3-642-75015-1 |
5 | ″ | ″ | sg:pub.10.1007/978-94-009-2889-3_15 |
6 | ″ | schema:datePublished | 1992-02 |
7 | ″ | schema:datePublishedReg | 1992-02-01 |
8 | ″ | schema:description | Taylor-Aris dispersion theory, as generalized by Brenner, is employed to investigate the macroscopic behavior of sorbing solute transport in a three-dimensional, hydraulically homogeneous porous medium under steady, unidirectional flow. The porous medium is considered to possess spatially periodic geochemical characteristics in all three directions, where the spatial periods define a rectangular parallelepiped or a unit-element. The spatially-variable geochemical parameters of the solid matrix are incorporated into the transport equation by a spatially-periodic distribution coefficient and consequently a spatially-periodic retardation factor. Expressions for the effective or large-time coefficients governing the macroscopic solute transport are derived for solute sorbing according to a linear equilibrium isotherm as well as for the case of a first-order kinetic sorption relationship. The results indicate that for the case of a chemical equilibrium sorption isotherm the longitudinal macrodispersion incorporates a second term that accounts for the eflect of averaging the distribution coefficient over the volume of a unit element. Furthermore, for the case of a kinetic sorption relation, the longitudinal macrodispersion expression includes a third term that accounts for the effect of the first-order sorption rate. Therefore, increased solute spreading is expected if the local chemical equilibrium assumption is not valid. The derived expressions of the apparent parameters governing the macroscopic solute transport under local equilibrium conditions agreed reasonably with the results of numerical computations using particle tracking techniques. |
9 | ″ | schema:genre | article |
10 | ″ | schema:inLanguage | en |
11 | ″ | schema:isAccessibleForFree | false |
12 | ″ | schema:isPartOf | N250d0980cf184dea93400a07026b51a3 |
13 | ″ | ″ | N5db67bc0786d450ebb6c4d252f9210d1 |
14 | ″ | ″ | sg:journal.1050641 |
15 | ″ | schema:keywords | Brenner |
16 | ″ | ″ | Taylor-Aris dispersion theory |
17 | ″ | ″ | analysis |
18 | ″ | ″ | apparent parameters |
19 | ″ | ″ | assumption |
20 | ″ | ″ | behavior |
21 | ″ | ″ | cases |
22 | ″ | ″ | characteristics |
23 | ″ | ″ | chemical equilibrium assumption |
24 | ″ | ″ | coefficient |
25 | ″ | ″ | computation |
26 | ″ | ″ | conditions |
27 | ″ | ″ | direction |
28 | ″ | ″ | dispersion theory |
29 | ″ | ″ | distribution coefficients |
30 | ″ | ″ | effect |
31 | ″ | ″ | eflect |
32 | ″ | ″ | elements |
33 | ″ | ″ | equations |
34 | ″ | ″ | equilibrium assumption |
35 | ″ | ″ | equilibrium conditions |
36 | ″ | ″ | equilibrium isotherms |
37 | ″ | ″ | equilibrium sorption |
38 | ″ | ″ | expression |
39 | ″ | ″ | factors |
40 | ″ | ″ | flow |
41 | ″ | ″ | geochemical characteristics |
42 | ″ | ″ | geochemical parameters |
43 | ″ | ″ | homogeneous porous media |
44 | ″ | ″ | isotherms |
45 | ″ | ″ | linear equilibrium isotherm |
46 | ″ | ″ | local chemical equilibrium assumption |
47 | ″ | ″ | local equilibrium conditions |
48 | ″ | ″ | longitudinal macrodispersion |
49 | ″ | ″ | macrodispersion |
50 | ″ | ″ | macroscopic behavior |
51 | ″ | ″ | matrix |
52 | ″ | ″ | medium |
53 | ″ | ″ | moment analysis |
54 | ″ | ″ | numerical computations |
55 | ″ | ″ | parameters |
56 | ″ | ″ | particle tracking technique |
57 | ″ | ″ | period |
58 | ″ | ″ | porous media |
59 | ″ | ″ | rate |
60 | ″ | ″ | relation |
61 | ″ | ″ | relationship |
62 | ″ | ″ | results |
63 | ″ | ″ | retardation factor |
64 | ″ | ″ | second term |
65 | ″ | ″ | solid matrix |
66 | ″ | ″ | solute spreading |
67 | ″ | ″ | solute transport |
68 | ″ | ″ | solutes |
69 | ″ | ″ | sorbing |
70 | ″ | ″ | sorption |
71 | ″ | ″ | sorption rate |
72 | ″ | ″ | spatial period |
73 | ″ | ″ | spreading |
74 | ″ | ″ | technique |
75 | ″ | ″ | terms |
76 | ″ | ″ | theory |
77 | ″ | ″ | third term |
78 | ″ | ″ | tracking technique |
79 | ″ | ″ | transport |
80 | ″ | ″ | transport equation |
81 | ″ | ″ | unidirectional flow |
82 | ″ | ″ | unit element |
83 | ″ | ″ | volume |
84 | ″ | schema:name | Generalized Taylor-Aris moment analysis of the transport of sorbing solutes through porous media with spatially-periodic retardation factor |
85 | ″ | schema:pagination | 163-185 |
86 | ″ | schema:productId | N120dd497f1704c9f999844b8741d8687 |
87 | ″ | ″ | N7c6c0bd5d13f4c3989c01592b1b2c56d |
88 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1018610251 |
89 | ″ | ″ | https://doi.org/10.1007/bf00647395 |
90 | ″ | schema:sdDatePublished | 2022-05-10T09:47 |
91 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
92 | ″ | schema:sdPublisher | Nccc028db561648e6b3f3a9270bebabb0 |
93 | ″ | schema:url | https://doi.org/10.1007/bf00647395 |
94 | ″ | sgo:license | sg:explorer/license/ |
95 | ″ | sgo:sdDataset | articles |
96 | ″ | rdf:type | schema:ScholarlyArticle |
97 | N120dd497f1704c9f999844b8741d8687 | schema:name | dimensions_id |
98 | ″ | schema:value | pub.1018610251 |
99 | ″ | rdf:type | schema:PropertyValue |
100 | N250d0980cf184dea93400a07026b51a3 | schema:volumeNumber | 7 |
101 | ″ | rdf:type | schema:PublicationVolume |
102 | N5115c83365d34c529ab401b52528e7d1 | rdf:first | sg:person.01176406127.37 |
103 | ″ | rdf:rest | Nb7cc8caf53864fd595845fa904d32e0b |
104 | N5db67bc0786d450ebb6c4d252f9210d1 | schema:issueNumber | 2 |
105 | ″ | rdf:type | schema:PublicationIssue |
106 | N7c6c0bd5d13f4c3989c01592b1b2c56d | schema:name | doi |
107 | ″ | schema:value | 10.1007/bf00647395 |
108 | ″ | rdf:type | schema:PropertyValue |
109 | Nab88dccf06a04774b27c13b793ea53ec | rdf:first | sg:person.016127725611.77 |
110 | ″ | rdf:rest | N5115c83365d34c529ab401b52528e7d1 |
111 | Nb7cc8caf53864fd595845fa904d32e0b | rdf:first | sg:person.0776421673.00 |
112 | ″ | rdf:rest | rdf:nil |
113 | Nccc028db561648e6b3f3a9270bebabb0 | schema:name | Springer Nature - SN SciGraph project |
114 | ″ | rdf:type | schema:Organization |
115 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
116 | ″ | schema:name | Engineering |
117 | ″ | rdf:type | schema:DefinedTerm |
118 | anzsrc-for:0914 | schema:inDefinedTermSet | anzsrc-for: |
119 | ″ | schema:name | Resources Engineering and Extractive Metallurgy |
120 | ″ | rdf:type | schema:DefinedTerm |
121 | sg:journal.1050641 | schema:issn | 0169-3913 |
122 | ″ | ″ | 1573-1634 |
123 | ″ | schema:name | Transport in Porous Media |
124 | ″ | schema:publisher | Springer Nature |
125 | ″ | rdf:type | schema:Periodical |
126 | sg:person.01176406127.37 | schema:affiliation | grid-institutes:grid.168010.e |
127 | ″ | schema:familyName | Kitanidis |
128 | ″ | schema:givenName | Peter K. |
129 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176406127.37 |
130 | ″ | rdf:type | schema:Person |
131 | sg:person.016127725611.77 | schema:affiliation | grid-institutes:grid.168010.e |
132 | ″ | schema:familyName | Chrysikopoulos |
133 | ″ | schema:givenName | Constantinos V. |
134 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016127725611.77 |
135 | ″ | rdf:type | schema:Person |
136 | sg:person.0776421673.00 | schema:affiliation | grid-institutes:grid.168010.e |
137 | ″ | schema:familyName | Roberts |
138 | ″ | schema:givenName | Paul V. |
139 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776421673.00 |
140 | ″ | rdf:type | schema:Person |
141 | sg:pub.10.1007/978-3-642-75015-1 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1019196658 |
142 | ″ | ″ | https://doi.org/10.1007/978-3-642-75015-1 |
143 | ″ | rdf:type | schema:CreativeWork |
144 | sg:pub.10.1007/978-94-009-2889-3_15 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1036103115 |
145 | ″ | ″ | https://doi.org/10.1007/978-94-009-2889-3_15 |
146 | ″ | rdf:type | schema:CreativeWork |
147 | grid-institutes:grid.168010.e | schema:alternateName | Department of Civil Engineering, Stanford University, 94305-4020, Stanford, CA, USA |
148 | ″ | schema:name | Department of Civil Engineering, Stanford University, 94305-4020, Stanford, CA, USA |
149 | ″ | rdf:type | schema:Organization |