Cosmic neutrinos of ultra-high energies and detection possibility View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1975-02

AUTHORS

V. S. Berezinsky, A. Yu. Smirnov

ABSTRACT

The fluxes and spectra of galactic and extragalactic neutrinos at energy 1011–1019 eV are calculated. In particular, the neutrino flux from the normal galaxies is calculated taking into account the spectral index distribution. The only assumption that seriously affects the calculated neutrino flux atEv≳1017 eV is the power-like generation spectrum of protons in the entire considered energy region. The normal galaxies with the accepted parameters generate the metagalactic equivalent electron component (electrons+their radiation) with energy densityωe≈8.5×10−7 eV cm−3, while the density of the observed diffuse X-ray radiation alone is 100 times higher. This requires the existence of other neutrino sources and we found the minimized neutrino flux under two limitations: (1) the power-law generation spectrum of protons and (2) production of the observed energy density of the diffuse X-an γ-radiation. These requirements are met in the evolutionary model of origin of the metagalactic cosmic rays with modern energy densityωM8≈3.6×10−7 eV cm−3. The possibility of experiments with cosmic neutrinos of energyEv≳3×1017 eV is discussed. The upper bound on neutrino-nucleon cross-section σ<2.2×10−29 cm2 is obtained in evolutionary model from the observed zenith angular distribution of extensive air showers. In Appendix 2 the diffuse X-and γ-ray flux arising together with neutrino flux is calculated. It agrees with observed flux in the entire energy range from 1 keV up to 100 MeV. More... »

PAGES

461-482

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00643157

DOI

http://dx.doi.org/10.1007/bf00643157

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020392627


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Astronomical and Space Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Institute for Nuclear Study, U.S.S.R. Academy of Sciences, Moscow, USSR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Berezinsky", 
        "givenName": "V. S.", 
        "id": "sg:person.014533056745.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014533056745.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Institute for Nuclear Study, U.S.S.R. Academy of Sciences, Moscow, USSR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Smirnov", 
        "givenName": "A. Yu.", 
        "id": "sg:person.0771061465.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771061465.70"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/241109b0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014145097", 
          "https://doi.org/10.1038/241109b0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/p68-311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032066402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/2/3/015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059068561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.27.1604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060775032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.27.1604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060775032"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1975-02", 
    "datePublishedReg": "1975-02-01", 
    "description": "The fluxes and spectra of galactic and extragalactic neutrinos at energy 1011\u20131019 eV are calculated. In particular, the neutrino flux from the normal galaxies is calculated taking into account the spectral index distribution. The only assumption that seriously affects the calculated neutrino flux atEv\u22731017 eV is the power-like generation spectrum of protons in the entire considered energy region. The normal galaxies with the accepted parameters generate the metagalactic equivalent electron component (electrons+their radiation) with energy density\u03c9e\u22488.5\u00d710\u22127 eV cm\u22123, while the density of the observed diffuse X-ray radiation alone is 100 times higher. This requires the existence of other neutrino sources and we found the minimized neutrino flux under two limitations: (1) the power-law generation spectrum of protons and (2) production of the observed energy density of the diffuse X-an \u03b3-radiation. These requirements are met in the evolutionary model of origin of the metagalactic cosmic rays with modern energy density\u03c9M8\u22483.6\u00d710\u22127 eV cm\u22123. The possibility of experiments with cosmic neutrinos of energyEv\u22733\u00d71017 eV is discussed. The upper bound on neutrino-nucleon cross-section \u03c3<2.2\u00d710\u221229 cm2 is obtained in evolutionary model from the observed zenith angular distribution of extensive air showers. In Appendix 2 the diffuse X-and \u03b3-ray flux arising together with neutrino flux is calculated. It agrees with observed flux in the entire energy range from 1 keV up to 100 MeV.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf00643157", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1026094", 
        "issn": [
          "0004-640X", 
          "1572-946X"
        ], 
        "name": "Astrophysics and Space Science", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "32"
      }
    ], 
    "name": "Cosmic neutrinos of ultra-high energies and detection possibility", 
    "pagination": "461-482", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "612a3a9691f1298869f3c158c47b5d12c5402ea7c95d66834fa91f71349dffd6"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00643157"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020392627"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00643157", 
      "https://app.dimensions.ai/details/publication/pub.1020392627"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000372_0000000372/records_117091_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF00643157"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00643157'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00643157'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00643157'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00643157'


 

This table displays all metadata directly associated to this object as RDF triples.

81 TRIPLES      21 PREDICATES      31 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00643157 schema:about anzsrc-for:02
2 anzsrc-for:0201
3 schema:author Ncbeaaa721ccb4ab1acede5f51c39f253
4 schema:citation sg:pub.10.1038/241109b0
5 https://doi.org/10.1088/0305-4470/2/3/015
6 https://doi.org/10.1103/physrevlett.27.1604
7 https://doi.org/10.1139/p68-311
8 schema:datePublished 1975-02
9 schema:datePublishedReg 1975-02-01
10 schema:description The fluxes and spectra of galactic and extragalactic neutrinos at energy 1011–1019 eV are calculated. In particular, the neutrino flux from the normal galaxies is calculated taking into account the spectral index distribution. The only assumption that seriously affects the calculated neutrino flux atEv≳1017 eV is the power-like generation spectrum of protons in the entire considered energy region. The normal galaxies with the accepted parameters generate the metagalactic equivalent electron component (electrons+their radiation) with energy densityωe≈8.5×10−7 eV cm−3, while the density of the observed diffuse X-ray radiation alone is 100 times higher. This requires the existence of other neutrino sources and we found the minimized neutrino flux under two limitations: (1) the power-law generation spectrum of protons and (2) production of the observed energy density of the diffuse X-an γ-radiation. These requirements are met in the evolutionary model of origin of the metagalactic cosmic rays with modern energy densityωM8≈3.6×10−7 eV cm−3. The possibility of experiments with cosmic neutrinos of energyEv≳3×1017 eV is discussed. The upper bound on neutrino-nucleon cross-section σ<2.2×10−29 cm2 is obtained in evolutionary model from the observed zenith angular distribution of extensive air showers. In Appendix 2 the diffuse X-and γ-ray flux arising together with neutrino flux is calculated. It agrees with observed flux in the entire energy range from 1 keV up to 100 MeV.
11 schema:genre research_article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N0412963714b741d2b20dc4517109707f
15 Nd6ef8ac6d1444e2c99f79f73d52e97c8
16 sg:journal.1026094
17 schema:name Cosmic neutrinos of ultra-high energies and detection possibility
18 schema:pagination 461-482
19 schema:productId N4d7e6596e4c74010ab3c956c56db84e3
20 N643e85f0af0049ab8d203f4b7533aaac
21 Nd716fb1dd6b0486f9515c6417076beab
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020392627
23 https://doi.org/10.1007/bf00643157
24 schema:sdDatePublished 2019-04-11T14:16
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher N89d97379fa2044348568a4a35d5d239a
27 schema:url http://link.springer.com/10.1007/BF00643157
28 sgo:license sg:explorer/license/
29 sgo:sdDataset articles
30 rdf:type schema:ScholarlyArticle
31 N0412963714b741d2b20dc4517109707f schema:volumeNumber 32
32 rdf:type schema:PublicationVolume
33 N4d7e6596e4c74010ab3c956c56db84e3 schema:name dimensions_id
34 schema:value pub.1020392627
35 rdf:type schema:PropertyValue
36 N643e85f0af0049ab8d203f4b7533aaac schema:name readcube_id
37 schema:value 612a3a9691f1298869f3c158c47b5d12c5402ea7c95d66834fa91f71349dffd6
38 rdf:type schema:PropertyValue
39 N89d97379fa2044348568a4a35d5d239a schema:name Springer Nature - SN SciGraph project
40 rdf:type schema:Organization
41 Na14ccf42eab24680ac873b90f1801e8e rdf:first sg:person.0771061465.70
42 rdf:rest rdf:nil
43 Ncbeaaa721ccb4ab1acede5f51c39f253 rdf:first sg:person.014533056745.76
44 rdf:rest Na14ccf42eab24680ac873b90f1801e8e
45 Nd6ef8ac6d1444e2c99f79f73d52e97c8 schema:issueNumber 2
46 rdf:type schema:PublicationIssue
47 Nd716fb1dd6b0486f9515c6417076beab schema:name doi
48 schema:value 10.1007/bf00643157
49 rdf:type schema:PropertyValue
50 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
51 schema:name Physical Sciences
52 rdf:type schema:DefinedTerm
53 anzsrc-for:0201 schema:inDefinedTermSet anzsrc-for:
54 schema:name Astronomical and Space Sciences
55 rdf:type schema:DefinedTerm
56 sg:journal.1026094 schema:issn 0004-640X
57 1572-946X
58 schema:name Astrophysics and Space Science
59 rdf:type schema:Periodical
60 sg:person.014533056745.76 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
61 schema:familyName Berezinsky
62 schema:givenName V. S.
63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014533056745.76
64 rdf:type schema:Person
65 sg:person.0771061465.70 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
66 schema:familyName Smirnov
67 schema:givenName A. Yu.
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771061465.70
69 rdf:type schema:Person
70 sg:pub.10.1038/241109b0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014145097
71 https://doi.org/10.1038/241109b0
72 rdf:type schema:CreativeWork
73 https://doi.org/10.1088/0305-4470/2/3/015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059068561
74 rdf:type schema:CreativeWork
75 https://doi.org/10.1103/physrevlett.27.1604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060775032
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1139/p68-311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032066402
78 rdf:type schema:CreativeWork
79 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
80 schema:name Institute for Nuclear Study, U.S.S.R. Academy of Sciences, Moscow, USSR
81 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...