Ontology type: schema:ScholarlyArticle
1995-12
AUTHORSA. Brunini, C. M. Giordano, A. R. Plastino
ABSTRACTA Riemann ellipsoid is a self-gravitating fluid whose velocity field is a linear function of the position coordinates. Though the theory of the equilibrium and stability is thoroughly developed, scarse attention has been paid to the dynamical behaviour. In this paper we present a numerical exploration of the phase-space structure for the Self-Adjoint S-Type Riemann ellipsoids via Poincaré surfaces of section, which reveal a rich and complex dynamical behaviour. Both the occurrence of chaos for certain values of the parameters of the system as well as the existence of periodic orbits are observed. We also considered ellipsoids embedded in rigid, homogeneous, spherical halos, obtaining evidence of the stabilizing effect of halos even in the case of finite-amplitude oscillations. Moreover, we show that the approximated equations of motion derived by Rosensteel and Tran (1991) fail to describe properly the phase-space structure of the problem. More... »
PAGES153-167
http://scigraph.springernature.com/pub.10.1007/bf00627289
DOIhttp://dx.doi.org/10.1007/bf00627289
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1052697994
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "National Scientific and Technical Research Council",
"id": "https://www.grid.ac/institutes/grid.423606.5",
"name": [
"PROFOEG - Facultad de Ciencias Astron\u00f3micas y Geof\u00edsicas, Paseo del Bosque (1900), La Plata, Argentina",
"C.O.N.I.C.E.T., Argentina"
],
"type": "Organization"
},
"familyName": "Brunini",
"givenName": "A.",
"id": "sg:person.012375155501.30",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012375155501.30"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"PROFOEG - Facultad de Ciencias Astron\u00f3micas y Geof\u00edsicas, Paseo del Bosque (1900), La Plata, Argentina"
],
"type": "Organization"
},
"familyName": "Giordano",
"givenName": "C. M.",
"id": "sg:person.013763210341.24",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013763210341.24"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "National Scientific and Technical Research Council",
"id": "https://www.grid.ac/institutes/grid.423606.5",
"name": [
"PROFOEG - Facultad de Ciencias Astron\u00f3micas y Geof\u00edsicas, Paseo del Bosque (1900), La Plata, Argentina",
"C.O.N.I.C.E.T., Argentina"
],
"type": "Organization"
},
"familyName": "Plastino",
"givenName": "A. R.",
"id": "sg:person.014560570741.53",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014560570741.53"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf00693324",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000060967",
"https://doi.org/10.1007/bf00693324"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00693324",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000060967",
"https://doi.org/10.1007/bf00693324"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1146/annurev.aa.05.090167.002341",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001433722"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1146/annurev.fl.04.010172.001251",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004870719"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1146/annurev.aa.15.090177.002253",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005487323"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1029/tr038i006p00841",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039917709"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1086/147175",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1058478466"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1086/149238",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1058480529"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1086/149569",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1058480859"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1086/153729",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1058485019"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1086/154586",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1058485876"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1086/156431",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1058487721"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1086/157156",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1058488446"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1086/158858",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1058490148"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1086/161535",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1058492825"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1086/162415",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1058493705"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1086/169537",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1058500827"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.66.978",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060802941"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.66.978",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060802941"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1143/ptp.56.1665",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1063136246"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-94-010-1818-0_29",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1089510728",
"https://doi.org/10.1007/978-94-010-1818-0_29"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1515/9781400885855",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1096880019"
],
"type": "CreativeWork"
}
],
"datePublished": "1995-12",
"datePublishedReg": "1995-12-01",
"description": "A Riemann ellipsoid is a self-gravitating fluid whose velocity field is a linear function of the position coordinates. Though the theory of the equilibrium and stability is thoroughly developed, scarse attention has been paid to the dynamical behaviour. In this paper we present a numerical exploration of the phase-space structure for the Self-Adjoint S-Type Riemann ellipsoids via Poincar\u00e9 surfaces of section, which reveal a rich and complex dynamical behaviour. Both the occurrence of chaos for certain values of the parameters of the system as well as the existence of periodic orbits are observed. We also considered ellipsoids embedded in rigid, homogeneous, spherical halos, obtaining evidence of the stabilizing effect of halos even in the case of finite-amplitude oscillations. Moreover, we show that the approximated equations of motion derived by Rosensteel and Tran (1991) fail to describe properly the phase-space structure of the problem.",
"genre": "research_article",
"id": "sg:pub.10.1007/bf00627289",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1026094",
"issn": [
"0004-640X",
"1572-946X"
],
"name": "Astrophysics and Space Science",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "234"
}
],
"name": "Numerical exploration of the dynamics of Self-Adjoint S-Type Riemann ellipsoids",
"pagination": "153-167",
"productId": [
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/bf00627289"
]
},
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"fb04533aff0ea171174660bb77bdcf030ab64ae59aeb9724837c0e64efe753c5"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1052697994"
]
}
],
"sameAs": [
"https://doi.org/10.1007/bf00627289",
"https://app.dimensions.ai/details/publication/pub.1052697994"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-15T09:00",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000375_0000000375/records_91438_00000001.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1007/BF00627289"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00627289'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00627289'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00627289'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00627289'
This table displays all metadata directly associated to this object as RDF triples.
140 TRIPLES
21 PREDICATES
47 URIs
19 LITERALS
7 BLANK NODES