On estimating the Weibull modulus for a brittle material View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1979-05

AUTHORS

K. Trustrum, A. De S. Jayatilaka

ABSTRACT

Common methods of estimating the Weibull modulus are surveyed. Computer simulation is used to obtain the statistical properties of different estimators. Most estimators are shown to be biased and their respective adjustment factors, for a range of experimentally feasible sample sizes, are given.

PAGES

1080-1084

References to SciGraph publications

  • 1977-07. Statistical approach to brittle fracture in JOURNAL OF MATERIALS SCIENCE
  • Journal

    TITLE

    Journal of Materials Science

    ISSUE

    5

    VOLUME

    14

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf00561290

    DOI

    http://dx.doi.org/10.1007/bf00561290

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1051039265


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Sussex", 
              "id": "https://www.grid.ac/institutes/grid.12082.39", 
              "name": [
                "School of Mathematical and Physical Sciences, and School of Engineering and Applied Sciences, University of Sussex, Brighton, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Trustrum", 
            "givenName": "K.", 
            "id": "sg:person.013433402163.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013433402163.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Sussex", 
              "id": "https://www.grid.ac/institutes/grid.12082.39", 
              "name": [
                "School of Mathematical and Physical Sciences, and School of Engineering and Applied Sciences, University of Sussex, Brighton, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jayatilaka", 
            "givenName": "A. De S.", 
            "id": "sg:person.07417035066.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07417035066.67"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00540858", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004507991", 
              "https://doi.org/10.1007/bf00540858"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00401706.1969.10490706", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058284072"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1979-05", 
        "datePublishedReg": "1979-05-01", 
        "description": "Common methods of estimating the Weibull modulus are surveyed. Computer simulation is used to obtain the statistical properties of different estimators. Most estimators are shown to be biased and their respective adjustment factors, for a range of experimentally feasible sample sizes, are given.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf00561290", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1312116", 
            "issn": [
              "0022-2461", 
              "1573-4811"
            ], 
            "name": "Journal of Materials Science", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "14"
          }
        ], 
        "name": "On estimating the Weibull modulus for a brittle material", 
        "pagination": "1080-1084", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "f32209b7b7dc0cdddbbe48ea6fc5baca7a7850e694132ea417f795e5352a4179"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf00561290"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1051039265"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf00561290", 
          "https://app.dimensions.ai/details/publication/pub.1051039265"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T14:02", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130830_00000004.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF00561290"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00561290'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00561290'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00561290'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00561290'


     

    This table displays all metadata directly associated to this object as RDF triples.

    67 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf00561290 schema:author N392830221c9342ad962226e4fa7ffca4
    2 schema:citation sg:pub.10.1007/bf00540858
    3 https://doi.org/10.1080/00401706.1969.10490706
    4 schema:datePublished 1979-05
    5 schema:datePublishedReg 1979-05-01
    6 schema:description Common methods of estimating the Weibull modulus are surveyed. Computer simulation is used to obtain the statistical properties of different estimators. Most estimators are shown to be biased and their respective adjustment factors, for a range of experimentally feasible sample sizes, are given.
    7 schema:genre research_article
    8 schema:inLanguage en
    9 schema:isAccessibleForFree false
    10 schema:isPartOf N63856139b8d641ee91a28aec72d61742
    11 N6b8747e7d70344f78f5d1290387c1a52
    12 sg:journal.1312116
    13 schema:name On estimating the Weibull modulus for a brittle material
    14 schema:pagination 1080-1084
    15 schema:productId N1536894a071f4134980015adb7c58864
    16 Na109237f5a1b4f66bd3ff2bda8512f22
    17 Na96426bd14284c5bbcfd350f9fd5b77b
    18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051039265
    19 https://doi.org/10.1007/bf00561290
    20 schema:sdDatePublished 2019-04-11T14:02
    21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    22 schema:sdPublisher N017d68b19a034fd7a3c27280ec8c743c
    23 schema:url http://link.springer.com/10.1007/BF00561290
    24 sgo:license sg:explorer/license/
    25 sgo:sdDataset articles
    26 rdf:type schema:ScholarlyArticle
    27 N017d68b19a034fd7a3c27280ec8c743c schema:name Springer Nature - SN SciGraph project
    28 rdf:type schema:Organization
    29 N1536894a071f4134980015adb7c58864 schema:name dimensions_id
    30 schema:value pub.1051039265
    31 rdf:type schema:PropertyValue
    32 N1ff33609c64a4040bb89971af5781e1d rdf:first sg:person.07417035066.67
    33 rdf:rest rdf:nil
    34 N392830221c9342ad962226e4fa7ffca4 rdf:first sg:person.013433402163.12
    35 rdf:rest N1ff33609c64a4040bb89971af5781e1d
    36 N63856139b8d641ee91a28aec72d61742 schema:issueNumber 5
    37 rdf:type schema:PublicationIssue
    38 N6b8747e7d70344f78f5d1290387c1a52 schema:volumeNumber 14
    39 rdf:type schema:PublicationVolume
    40 Na109237f5a1b4f66bd3ff2bda8512f22 schema:name readcube_id
    41 schema:value f32209b7b7dc0cdddbbe48ea6fc5baca7a7850e694132ea417f795e5352a4179
    42 rdf:type schema:PropertyValue
    43 Na96426bd14284c5bbcfd350f9fd5b77b schema:name doi
    44 schema:value 10.1007/bf00561290
    45 rdf:type schema:PropertyValue
    46 sg:journal.1312116 schema:issn 0022-2461
    47 1573-4811
    48 schema:name Journal of Materials Science
    49 rdf:type schema:Periodical
    50 sg:person.013433402163.12 schema:affiliation https://www.grid.ac/institutes/grid.12082.39
    51 schema:familyName Trustrum
    52 schema:givenName K.
    53 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013433402163.12
    54 rdf:type schema:Person
    55 sg:person.07417035066.67 schema:affiliation https://www.grid.ac/institutes/grid.12082.39
    56 schema:familyName Jayatilaka
    57 schema:givenName A. De S.
    58 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07417035066.67
    59 rdf:type schema:Person
    60 sg:pub.10.1007/bf00540858 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004507991
    61 https://doi.org/10.1007/bf00540858
    62 rdf:type schema:CreativeWork
    63 https://doi.org/10.1080/00401706.1969.10490706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058284072
    64 rdf:type schema:CreativeWork
    65 https://www.grid.ac/institutes/grid.12082.39 schema:alternateName University of Sussex
    66 schema:name School of Mathematical and Physical Sciences, and School of Engineering and Applied Sciences, University of Sussex, Brighton, UK
    67 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...