Two-stage enthalpy relaxation behaviour of (Fe0.5Ni0.5)83P17 and (Fe0.5Ni0.5)83B17 amorphous alloys upon annealing View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1985-07

AUTHORS

H. S. Chen, A. Inoue, T. Masumoto

ABSTRACT

The anneal-induced enthalpy relaxation behaviour for (Fe0.5Ni0.5)83P17 and (Fe0.5Ni0.5)83B17 amorphous alloys was examined calorimetrically. Upon heating the sample annealed at temperatures belowTg, an excess endothermic reaction (enthalpy relaxation) occurs aboveTa. The ΔCp,endo evolves reversibly in a continuous manner with Inta. The changes in the magnitude of ΔCp,endo and ΔHendo withTa show clearly two distinct stages; a low-temperature one which peaks at aboutTg-200 K and a high-temperature peak just belowTg. The activation energy,Qm, increases with the peak temperature of ΔCP,Tm, from 1.7 to 2.5 eV for the Fe-Ni-P and from 1.8 to 2.0 eV for the Fe-Ni-B for the low-temperature peak, and from 2.6 to 5.0 eV for the Fe-Ni-P for the high-temperature peak. The reversible change inTc for the Fe-Ni-P alloy pre-annealed for 1 min at 640 K as a function ofTa was also found to show two stages; a low-temperature stage ranging from 400 to 550 K whereTc rises, and a high-temperature one above 550 K whereTc lowers. From the almost complete agreement of the temperature region and the peak temperature for each stage as well as the marked contrast in the change ofTc, it was proposed that the low-temperature endothermic peak is attributed to local and medium range rearrangements of metallic (iron and nickel) atoms and the high-temperature reaction to the long-range cooperative regroupings of metallic and metalloid atoms. The mechanism for the appearance of the two-stage enthalpy relaxation was investigated based on the new concept of two-stage distribution in relaxation times (or glass transitions) centring atTg1 andTg2 which arise respectively from the metal atoms and from the metal-metalloid atoms and the distinct two-stage splitting was interpreted to generate by the distinctly distinguishable difference in the easiness of structural relaxation between metal-metal and metal-metalloid. It was further found that the present irreversible and reversible enthalpy relaxation results are fairly well interpreted by a possible mechanism of two-stage relaxation processes consisting of as-quenched amorphous → local and medium range relaxation of metal atoms → cooperative relaxation of metal and metalloid atoms. More... »

PAGES

2417-2438

Journal

TITLE

Journal of Materials Science

ISSUE

7

VOLUME

20

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00556071

DOI

http://dx.doi.org/10.1007/bf00556071

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025129108


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "AT and T Bell Laboratories, 07974, Murray Hill, New Jersey, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "H. S.", 
        "id": "sg:person.014155245764.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014155245764.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tohoku University", 
          "id": "https://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "The Research Institute for Iron, Steel and Other Metals, Tohoku University, 980, Sendai, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Inoue", 
        "givenName": "A.", 
        "id": "sg:person.013100326213.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013100326213.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tohoku University", 
          "id": "https://www.grid.ac/institutes/grid.69566.3a", 
          "name": [
            "The Research Institute for Iron, Steel and Other Metals, Tohoku University, 980, Sendai, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Masumoto", 
        "givenName": "T.", 
        "id": "sg:person.013554663235.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013554663235.37"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0022-3093(81)90007-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001624011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3093(81)90007-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001624011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3093(80)90448-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003353170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3093(80)90448-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003353170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0025-5416(76)90228-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007870745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0025-5416(76)90228-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007870745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3093(84)90641-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013157844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3093(84)90641-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013157844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00980759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017026428", 
          "https://doi.org/10.1007/bf00980759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00980759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017026428", 
          "https://doi.org/10.1007/bf00980759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0036-9748(78)90015-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020082422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0036-9748(78)90015-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020082422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3093(78)90116-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020738716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3093(78)90116-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020738716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0036-9748(80)90183-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021597519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0036-9748(80)90183-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021597519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00550830", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026205153", 
          "https://doi.org/10.1007/bf00550830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00550830", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026205153", 
          "https://doi.org/10.1007/bf00550830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0036-9748(80)90089-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028055615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0036-9748(80)90089-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028055615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3093(78)90128-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033161851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3093(78)90128-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033161851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3093(84)90658-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036268176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3093(84)90637-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036791394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0025-5408(78)90178-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038810096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0025-5408(78)90178-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038810096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3093(84)90674-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039461882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3093(84)90674-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039461882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0032-3861(71)90041-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041612145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0032-3861(71)90041-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041612145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pssa.2210520218", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046408485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1662718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057741070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1730566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057796978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.325279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057925057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.325439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057925507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.329554", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057932800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.88725", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058128865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.100.1677", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060416729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.100.1677", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060416729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.20.1077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060526258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.20.1077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060526258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.27.1586", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060531960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.27.1586", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060531960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmag.1976.1059237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061668418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2320/jinstmet1952.42.3_303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084972801"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1985-07", 
    "datePublishedReg": "1985-07-01", 
    "description": "The anneal-induced enthalpy relaxation behaviour for (Fe0.5Ni0.5)83P17 and (Fe0.5Ni0.5)83B17 amorphous alloys was examined calorimetrically. Upon heating the sample annealed at temperatures belowTg, an excess endothermic reaction (enthalpy relaxation) occurs aboveTa. The \u0394Cp,endo evolves reversibly in a continuous manner with Inta. The changes in the magnitude of \u0394Cp,endo and \u0394Hendo withTa show clearly two distinct stages; a low-temperature one which peaks at aboutTg-200 K and a high-temperature peak just belowTg. The activation energy,Qm, increases with the peak temperature of \u0394CP,Tm, from 1.7 to 2.5 eV for the Fe-Ni-P and from 1.8 to 2.0 eV for the Fe-Ni-B for the low-temperature peak, and from 2.6 to 5.0 eV for the Fe-Ni-P for the high-temperature peak. The reversible change inTc for the Fe-Ni-P alloy pre-annealed for 1 min at 640 K as a function ofTa was also found to show two stages; a low-temperature stage ranging from 400 to 550 K whereTc rises, and a high-temperature one above 550 K whereTc lowers. From the almost complete agreement of the temperature region and the peak temperature for each stage as well as the marked contrast in the change ofTc, it was proposed that the low-temperature endothermic peak is attributed to local and medium range rearrangements of metallic (iron and nickel) atoms and the high-temperature reaction to the long-range cooperative regroupings of metallic and metalloid atoms. The mechanism for the appearance of the two-stage enthalpy relaxation was investigated based on the new concept of two-stage distribution in relaxation times (or glass transitions) centring atTg1 andTg2 which arise respectively from the metal atoms and from the metal-metalloid atoms and the distinct two-stage splitting was interpreted to generate by the distinctly distinguishable difference in the easiness of structural relaxation between metal-metal and metal-metalloid. It was further found that the present irreversible and reversible enthalpy relaxation results are fairly well interpreted by a possible mechanism of two-stage relaxation processes consisting of as-quenched amorphous \u2192 local and medium range relaxation of metal atoms \u2192 cooperative relaxation of metal and metalloid atoms.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf00556071", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1312116", 
        "issn": [
          "0022-2461", 
          "1573-4811"
        ], 
        "name": "Journal of Materials Science", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "name": "Two-stage enthalpy relaxation behaviour of (Fe0.5Ni0.5)83P17 and (Fe0.5Ni0.5)83B17 amorphous alloys upon annealing", 
    "pagination": "2417-2438", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "77b73d8a23b0b420665d4d6b0104685d53e455b7c4b6e967c8f0df770b066276"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00556071"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025129108"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00556071", 
      "https://app.dimensions.ai/details/publication/pub.1025129108"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130814_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF00556071"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00556071'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00556071'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00556071'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00556071'


 

This table displays all metadata directly associated to this object as RDF triples.

163 TRIPLES      21 PREDICATES      55 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00556071 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nd1728a91c8ef4dae9137388f3ed978bf
4 schema:citation sg:pub.10.1007/bf00550830
5 sg:pub.10.1007/bf00980759
6 https://doi.org/10.1002/pssa.2210520218
7 https://doi.org/10.1016/0022-3093(78)90116-3
8 https://doi.org/10.1016/0022-3093(78)90128-x
9 https://doi.org/10.1016/0022-3093(80)90448-2
10 https://doi.org/10.1016/0022-3093(81)90007-7
11 https://doi.org/10.1016/0022-3093(84)90637-9
12 https://doi.org/10.1016/0022-3093(84)90641-0
13 https://doi.org/10.1016/0022-3093(84)90658-6
14 https://doi.org/10.1016/0022-3093(84)90674-4
15 https://doi.org/10.1016/0025-5408(78)90178-2
16 https://doi.org/10.1016/0025-5416(76)90228-7
17 https://doi.org/10.1016/0032-3861(71)90041-3
18 https://doi.org/10.1016/0036-9748(78)90015-7
19 https://doi.org/10.1016/0036-9748(80)90089-7
20 https://doi.org/10.1016/0036-9748(80)90183-0
21 https://doi.org/10.1063/1.1662718
22 https://doi.org/10.1063/1.1730566
23 https://doi.org/10.1063/1.325279
24 https://doi.org/10.1063/1.325439
25 https://doi.org/10.1063/1.329554
26 https://doi.org/10.1063/1.88725
27 https://doi.org/10.1103/physrev.100.1677
28 https://doi.org/10.1103/physrevb.20.1077
29 https://doi.org/10.1103/physrevb.27.1586
30 https://doi.org/10.1109/tmag.1976.1059237
31 https://doi.org/10.2320/jinstmet1952.42.3_303
32 schema:datePublished 1985-07
33 schema:datePublishedReg 1985-07-01
34 schema:description The anneal-induced enthalpy relaxation behaviour for (Fe0.5Ni0.5)83P17 and (Fe0.5Ni0.5)83B17 amorphous alloys was examined calorimetrically. Upon heating the sample annealed at temperatures belowTg, an excess endothermic reaction (enthalpy relaxation) occurs aboveTa. The ΔCp,endo evolves reversibly in a continuous manner with Inta. The changes in the magnitude of ΔCp,endo and ΔHendo withTa show clearly two distinct stages; a low-temperature one which peaks at aboutTg-200 K and a high-temperature peak just belowTg. The activation energy,Qm, increases with the peak temperature of ΔCP,Tm, from 1.7 to 2.5 eV for the Fe-Ni-P and from 1.8 to 2.0 eV for the Fe-Ni-B for the low-temperature peak, and from 2.6 to 5.0 eV for the Fe-Ni-P for the high-temperature peak. The reversible change inTc for the Fe-Ni-P alloy pre-annealed for 1 min at 640 K as a function ofTa was also found to show two stages; a low-temperature stage ranging from 400 to 550 K whereTc rises, and a high-temperature one above 550 K whereTc lowers. From the almost complete agreement of the temperature region and the peak temperature for each stage as well as the marked contrast in the change ofTc, it was proposed that the low-temperature endothermic peak is attributed to local and medium range rearrangements of metallic (iron and nickel) atoms and the high-temperature reaction to the long-range cooperative regroupings of metallic and metalloid atoms. The mechanism for the appearance of the two-stage enthalpy relaxation was investigated based on the new concept of two-stage distribution in relaxation times (or glass transitions) centring atTg1 andTg2 which arise respectively from the metal atoms and from the metal-metalloid atoms and the distinct two-stage splitting was interpreted to generate by the distinctly distinguishable difference in the easiness of structural relaxation between metal-metal and metal-metalloid. It was further found that the present irreversible and reversible enthalpy relaxation results are fairly well interpreted by a possible mechanism of two-stage relaxation processes consisting of as-quenched amorphous → local and medium range relaxation of metal atoms → cooperative relaxation of metal and metalloid atoms.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree false
38 schema:isPartOf N373adc04e5ce46f9b48cf6b538cc641f
39 N80ababdde89846d5b74e4670e50dc7cf
40 sg:journal.1312116
41 schema:name Two-stage enthalpy relaxation behaviour of (Fe0.5Ni0.5)83P17 and (Fe0.5Ni0.5)83B17 amorphous alloys upon annealing
42 schema:pagination 2417-2438
43 schema:productId N586e3176860448a780f01c9621704199
44 N68a57044587240c9ab76155d9e3fb035
45 Ndd71da44d5a94460971d52dc83243e1b
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025129108
47 https://doi.org/10.1007/bf00556071
48 schema:sdDatePublished 2019-04-11T13:55
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher Nf23d7f68eed34b1d8d288a3bdfd868cb
51 schema:url http://link.springer.com/10.1007/BF00556071
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N373adc04e5ce46f9b48cf6b538cc641f schema:volumeNumber 20
56 rdf:type schema:PublicationVolume
57 N586e3176860448a780f01c9621704199 schema:name dimensions_id
58 schema:value pub.1025129108
59 rdf:type schema:PropertyValue
60 N667a562196944547bd5537f05b272cfe schema:name AT and T Bell Laboratories, 07974, Murray Hill, New Jersey, USA
61 rdf:type schema:Organization
62 N68a57044587240c9ab76155d9e3fb035 schema:name readcube_id
63 schema:value 77b73d8a23b0b420665d4d6b0104685d53e455b7c4b6e967c8f0df770b066276
64 rdf:type schema:PropertyValue
65 N80ababdde89846d5b74e4670e50dc7cf schema:issueNumber 7
66 rdf:type schema:PublicationIssue
67 N84790073947c4ed2bedc424a2d66f658 rdf:first sg:person.013100326213.19
68 rdf:rest Nab74ee89d3304a7283b2a9e670b942c7
69 Nab74ee89d3304a7283b2a9e670b942c7 rdf:first sg:person.013554663235.37
70 rdf:rest rdf:nil
71 Nd1728a91c8ef4dae9137388f3ed978bf rdf:first sg:person.014155245764.11
72 rdf:rest N84790073947c4ed2bedc424a2d66f658
73 Ndd71da44d5a94460971d52dc83243e1b schema:name doi
74 schema:value 10.1007/bf00556071
75 rdf:type schema:PropertyValue
76 Nf23d7f68eed34b1d8d288a3bdfd868cb schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
79 schema:name Engineering
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
82 schema:name Materials Engineering
83 rdf:type schema:DefinedTerm
84 sg:journal.1312116 schema:issn 0022-2461
85 1573-4811
86 schema:name Journal of Materials Science
87 rdf:type schema:Periodical
88 sg:person.013100326213.19 schema:affiliation https://www.grid.ac/institutes/grid.69566.3a
89 schema:familyName Inoue
90 schema:givenName A.
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013100326213.19
92 rdf:type schema:Person
93 sg:person.013554663235.37 schema:affiliation https://www.grid.ac/institutes/grid.69566.3a
94 schema:familyName Masumoto
95 schema:givenName T.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013554663235.37
97 rdf:type schema:Person
98 sg:person.014155245764.11 schema:affiliation N667a562196944547bd5537f05b272cfe
99 schema:familyName Chen
100 schema:givenName H. S.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014155245764.11
102 rdf:type schema:Person
103 sg:pub.10.1007/bf00550830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026205153
104 https://doi.org/10.1007/bf00550830
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/bf00980759 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017026428
107 https://doi.org/10.1007/bf00980759
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1002/pssa.2210520218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046408485
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/0022-3093(78)90116-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020738716
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/0022-3093(78)90128-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1033161851
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/0022-3093(80)90448-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003353170
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/0022-3093(81)90007-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001624011
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/0022-3093(84)90637-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036791394
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/0022-3093(84)90641-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013157844
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/0022-3093(84)90658-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036268176
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/0022-3093(84)90674-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039461882
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/0025-5408(78)90178-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038810096
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/0025-5416(76)90228-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007870745
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/0032-3861(71)90041-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041612145
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/0036-9748(78)90015-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020082422
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/0036-9748(80)90089-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028055615
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/0036-9748(80)90183-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021597519
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1063/1.1662718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057741070
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1063/1.1730566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057796978
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1063/1.325279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057925057
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1063/1.325439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057925507
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1063/1.329554 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057932800
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1063/1.88725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058128865
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/physrev.100.1677 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060416729
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physrevb.20.1077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060526258
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/physrevb.27.1586 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060531960
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1109/tmag.1976.1059237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061668418
158 rdf:type schema:CreativeWork
159 https://doi.org/10.2320/jinstmet1952.42.3_303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084972801
160 rdf:type schema:CreativeWork
161 https://www.grid.ac/institutes/grid.69566.3a schema:alternateName Tohoku University
162 schema:name The Research Institute for Iron, Steel and Other Metals, Tohoku University, 980, Sendai, Japan
163 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...