Chemical graphs View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1979-12

AUTHORS

Alexandru T. Balaban

ABSTRACT

In order to find the centre of an acyclic connected graph (of a tree), vertices of degree one (endpoints) are removed stepwise. The numbers δi of vertices thus removed at each step form a digit sequenceS (pruning sequence) which reflects the branching of the tree. The sum of squares of digits in the sequenceS affords a new topologicalcentric index B = ∑i δi2 for the branching of trees. Comparisons with other topological indices are presented evidencing thatB induces an ordering of isomeric trees distinct from those induced by all other indices devised so far, becauseB emphasizes equally branches of similar length.It is shown that Rouvray's indexIis equivalent to Wiener's indexw, and that the Gordon-Scantlebury indexN2 and Gutmanet al.'s indexM1 belong to the same family, calledquadratic indices, and induce the same ordering.Since all topological indices vary both with the branching and the number of vertices in the tree, four new indices are devised fromB andM1 to account only (or mainly) for the branching, by normalization (imposing a lower bound equal to zero for chain-graphs, i.e.n-alkanes) or binormalization (same lower bound, and upper bound equal to one for star-graphs). Normalized and binormalized centric (C, C′) and quadratic indices (Q, Q′) are presented for the lower alkanes. From the five new topological indices, the centric indices (B, C, C′) are limited to trees, but the quadratic indices (Q, Q′) apply to any graph. Binormalized indices (C′,Q′) express the “topological shape” of the graph. More... »

PAGES

355-375

References to SciGraph publications

  • 1961-10. Zur Berechnung des Radius verzweigter Moleküle in COLLOID AND POLYMER SCIENCE
  • 1970-09. Theorie der ChiralitÄtsfunktionen in THEORETICAL CHEMISTRY ACCOUNTS
  • 1961-01. Zusammenhänge zwischen Struktur und gasehromatographischen Daten organischer Verbindungen in ANALYTICAL AND BIOANALYTICAL CHEMISTRY
  • 1973-03. On the eigenvalues of trees in PERIODICA MATHEMATICA HUNGARICA
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf00555695

    DOI

    http://dx.doi.org/10.1007/bf00555695

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1016708056


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0307", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Theoretical and Computational Chemistry", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Organic Chemistry Department, The Polytechnic, Bucharest, Roumania", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Organic Chemistry Department, The Polytechnic, Bucharest, Roumania"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Balaban", 
            "givenName": "Alexandru T.", 
            "id": "sg:person.0630206640.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0630206640.22"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00466597", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009553865", 
              "https://doi.org/10.1007/bf00466597"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01520772", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042940482", 
              "https://doi.org/10.1007/bf01520772"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00532232", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046277091", 
              "https://doi.org/10.1007/bf00532232"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02018473", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031664545", 
              "https://doi.org/10.1007/bf02018473"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1979-12", 
        "datePublishedReg": "1979-12-01", 
        "description": "In order to find the centre of an acyclic connected graph (of a tree), vertices of degree one (endpoints) are removed stepwise. The numbers \u03b4i of vertices thus removed at each step form a digit sequenceS (pruning sequence) which reflects the branching of the tree. The sum of squares of digits in the sequenceS affords a new topologicalcentric index B = \u2211i \u03b4i2 for the branching of trees. Comparisons with other topological indices are presented evidencing thatB induces an ordering of isomeric trees distinct from those induced by all other indices devised so far, becauseB emphasizes equally branches of similar length.It is shown that Rouvray's indexIis equivalent to Wiener's indexw, and that the Gordon-Scantlebury indexN2 and Gutmanet al.'s indexM1 belong to the same family, calledquadratic indices, and induce the same ordering.Since all topological indices vary both with the branching and the number of vertices in the tree, four new indices are devised fromB andM1 to account only (or mainly) for the branching, by normalization (imposing a lower bound equal to zero for chain-graphs, i.e.n-alkanes) or binormalization (same lower bound, and upper bound equal to one for star-graphs). Normalized and binormalized centric (C, C\u2032) and quadratic indices (Q, Q\u2032) are presented for the lower alkanes. From the five new topological indices, the centric indices (B, C, C\u2032) are limited to trees, but the quadratic indices (Q, Q\u2032) apply to any graph. Binormalized indices (C\u2032,Q\u2032) express the \u201ctopological shape\u201d of the graph.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf00555695", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1134081", 
            "issn": [
              "1432-881X", 
              "1432-2234"
            ], 
            "name": "Theoretical Chemistry Accounts", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "53"
          }
        ], 
        "keywords": [
          "quadratic index", 
          "branching of trees", 
          "topological indices", 
          "acyclic connected graph", 
          "sum of squares", 
          "number of vertices", 
          "topological shape", 
          "degree one", 
          "new topological indices", 
          "centric index", 
          "graph", 
          "vertices", 
          "connected graph", 
          "fromB", 
          "thatB", 
          "chemical graphs", 
          "squares", 
          "sum", 
          "same ordering", 
          "number", 
          "ordering", 
          "trees", 
          "new index", 
          "one", 
          "branching", 
          "branches", 
          "sequence", 
          "order", 
          "digit sequences", 
          "step", 
          "lower alkanes", 
          "index B", 
          "same family", 
          "index", 
          "al", 
          "shape", 
          "family", 
          "comparison", 
          "digits", 
          "normalization", 
          "stepwise", 
          "centric", 
          "length", 
          "equivalent", 
          "center", 
          "similar length", 
          "alkanes", 
          "new topologicalcentric index B", 
          "topologicalcentric index B", 
          "\u03b4i2", 
          "evidencing thatB", 
          "isomeric trees", 
          "becauseB", 
          "Rouvray's indexIis equivalent", 
          "'s indexIis equivalent", 
          "Wiener's indexw", 
          "'s indexw", 
          "Gordon-Scantlebury indexN2", 
          "indexN2", 
          "Gutmanet al", 
          "indexM1", 
          "calledquadratic indices", 
          "binormalization"
        ], 
        "name": "Chemical graphs", 
        "pagination": "355-375", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1016708056"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf00555695"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf00555695", 
          "https://app.dimensions.ai/details/publication/pub.1016708056"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:00", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_115.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf00555695"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00555695'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00555695'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00555695'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00555695'


     

    This table displays all metadata directly associated to this object as RDF triples.

    137 TRIPLES      22 PREDICATES      93 URIs      81 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf00555695 schema:about anzsrc-for:03
    2 anzsrc-for:0307
    3 schema:author Ncc9f2d3af8ad4945be04c70f090b2ff6
    4 schema:citation sg:pub.10.1007/bf00466597
    5 sg:pub.10.1007/bf00532232
    6 sg:pub.10.1007/bf01520772
    7 sg:pub.10.1007/bf02018473
    8 schema:datePublished 1979-12
    9 schema:datePublishedReg 1979-12-01
    10 schema:description In order to find the centre of an acyclic connected graph (of a tree), vertices of degree one (endpoints) are removed stepwise. The numbers δi of vertices thus removed at each step form a digit sequenceS (pruning sequence) which reflects the branching of the tree. The sum of squares of digits in the sequenceS affords a new topologicalcentric index B = ∑i δi2 for the branching of trees. Comparisons with other topological indices are presented evidencing thatB induces an ordering of isomeric trees distinct from those induced by all other indices devised so far, becauseB emphasizes equally branches of similar length.It is shown that Rouvray's indexIis equivalent to Wiener's indexw, and that the Gordon-Scantlebury indexN2 and Gutmanet al.'s indexM1 belong to the same family, calledquadratic indices, and induce the same ordering.Since all topological indices vary both with the branching and the number of vertices in the tree, four new indices are devised fromB andM1 to account only (or mainly) for the branching, by normalization (imposing a lower bound equal to zero for chain-graphs, i.e.n-alkanes) or binormalization (same lower bound, and upper bound equal to one for star-graphs). Normalized and binormalized centric (C, C′) and quadratic indices (Q, Q′) are presented for the lower alkanes. From the five new topological indices, the centric indices (B, C, C′) are limited to trees, but the quadratic indices (Q, Q′) apply to any graph. Binormalized indices (C′,Q′) express the “topological shape” of the graph.
    11 schema:genre article
    12 schema:inLanguage en
    13 schema:isAccessibleForFree false
    14 schema:isPartOf N8ece66c48a9d4d4b9254e0f98d1cdabf
    15 Nd832ed43ad554970ae8b582fc9a86315
    16 sg:journal.1134081
    17 schema:keywords 's indexIis equivalent
    18 's indexw
    19 Gordon-Scantlebury indexN2
    20 Gutmanet al
    21 Rouvray's indexIis equivalent
    22 Wiener's indexw
    23 acyclic connected graph
    24 al
    25 alkanes
    26 becauseB
    27 binormalization
    28 branches
    29 branching
    30 branching of trees
    31 calledquadratic indices
    32 center
    33 centric
    34 centric index
    35 chemical graphs
    36 comparison
    37 connected graph
    38 degree one
    39 digit sequences
    40 digits
    41 equivalent
    42 evidencing thatB
    43 family
    44 fromB
    45 graph
    46 index
    47 index B
    48 indexM1
    49 indexN2
    50 isomeric trees
    51 length
    52 lower alkanes
    53 new index
    54 new topological indices
    55 new topologicalcentric index B
    56 normalization
    57 number
    58 number of vertices
    59 one
    60 order
    61 ordering
    62 quadratic index
    63 same family
    64 same ordering
    65 sequence
    66 shape
    67 similar length
    68 squares
    69 step
    70 stepwise
    71 sum
    72 sum of squares
    73 thatB
    74 topological indices
    75 topological shape
    76 topologicalcentric index B
    77 trees
    78 vertices
    79 δi2
    80 schema:name Chemical graphs
    81 schema:pagination 355-375
    82 schema:productId N099d9c730b2247ea91492943507fae5c
    83 N5c8ba7fe564b4c4ea14a85da3f8299b4
    84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016708056
    85 https://doi.org/10.1007/bf00555695
    86 schema:sdDatePublished 2022-01-01T18:00
    87 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    88 schema:sdPublisher Nc53646f1f02e4dd4b3bdabaecdaca677
    89 schema:url https://doi.org/10.1007/bf00555695
    90 sgo:license sg:explorer/license/
    91 sgo:sdDataset articles
    92 rdf:type schema:ScholarlyArticle
    93 N099d9c730b2247ea91492943507fae5c schema:name doi
    94 schema:value 10.1007/bf00555695
    95 rdf:type schema:PropertyValue
    96 N5c8ba7fe564b4c4ea14a85da3f8299b4 schema:name dimensions_id
    97 schema:value pub.1016708056
    98 rdf:type schema:PropertyValue
    99 N8ece66c48a9d4d4b9254e0f98d1cdabf schema:issueNumber 4
    100 rdf:type schema:PublicationIssue
    101 Nc53646f1f02e4dd4b3bdabaecdaca677 schema:name Springer Nature - SN SciGraph project
    102 rdf:type schema:Organization
    103 Ncc9f2d3af8ad4945be04c70f090b2ff6 rdf:first sg:person.0630206640.22
    104 rdf:rest rdf:nil
    105 Nd832ed43ad554970ae8b582fc9a86315 schema:volumeNumber 53
    106 rdf:type schema:PublicationVolume
    107 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    108 schema:name Chemical Sciences
    109 rdf:type schema:DefinedTerm
    110 anzsrc-for:0307 schema:inDefinedTermSet anzsrc-for:
    111 schema:name Theoretical and Computational Chemistry
    112 rdf:type schema:DefinedTerm
    113 sg:journal.1134081 schema:issn 1432-2234
    114 1432-881X
    115 schema:name Theoretical Chemistry Accounts
    116 schema:publisher Springer Nature
    117 rdf:type schema:Periodical
    118 sg:person.0630206640.22 schema:affiliation grid-institutes:None
    119 schema:familyName Balaban
    120 schema:givenName Alexandru T.
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0630206640.22
    122 rdf:type schema:Person
    123 sg:pub.10.1007/bf00466597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009553865
    124 https://doi.org/10.1007/bf00466597
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1007/bf00532232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046277091
    127 https://doi.org/10.1007/bf00532232
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1007/bf01520772 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042940482
    130 https://doi.org/10.1007/bf01520772
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1007/bf02018473 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031664545
    133 https://doi.org/10.1007/bf02018473
    134 rdf:type schema:CreativeWork
    135 grid-institutes:None schema:alternateName Organic Chemistry Department, The Polytechnic, Bucharest, Roumania
    136 schema:name Organic Chemistry Department, The Polytechnic, Bucharest, Roumania
    137 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...