The role of inclusions in the fracture of ceramic materials View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1974-07

AUTHORS

A. G. Evans

ABSTRACT

The stress concentrations that occur at inclusions due to thermal expansion and elastic modulus mismatch are discussed and the stress intensity factors at interface cracks that result from these stresses are calculated. It is shown that conservative failure prediction based on an equivalence between inclusion size and crack size is usually acceptable if the shear modulusμ or thermal expansion coefficientα for the inclusion is larger than the matrix values. If, however,μ andα are smaller for the inclusion than the matrix, extensive cracking can develop at the inclusions which may lead to premature failure. For this case the only effective methods for failure prediction are techniques which give directly the maximum stress intensity factor, i.e., proof testing and/or acoustic emission. More... »

PAGES

1145-1152

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00552831

DOI

http://dx.doi.org/10.1007/bf00552831

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015415595


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Institute of Standards and Technology", 
          "id": "https://www.grid.ac/institutes/grid.94225.38", 
          "name": [
            "Physical Properties Section, National Bureau of Standards, Washington, D.C., USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Evans", 
        "givenName": "A. G.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/j.1151-2916.1961.tb15475.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016371546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02642759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019610646", 
          "https://doi.org/10.1007/bf02642759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02642759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019610646", 
          "https://doi.org/10.1007/bf02642759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02642759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019610646", 
          "https://doi.org/10.1007/bf02642759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00552043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036826251", 
          "https://doi.org/10.1007/bf00552043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00552043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036826251", 
          "https://doi.org/10.1007/bf00552043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00757910", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039730091", 
          "https://doi.org/10.1007/bf00757910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00757910", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039730091", 
          "https://doi.org/10.1007/bf00757910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-7014-1_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047342210", 
          "https://doi.org/10.1007/978-1-4615-7014-1_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-7014-1_30", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052894859", 
          "https://doi.org/10.1007/978-1-4615-7014-1_30"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1974-07", 
    "datePublishedReg": "1974-07-01", 
    "description": "The stress concentrations that occur at inclusions due to thermal expansion and elastic modulus mismatch are discussed and the stress intensity factors at interface cracks that result from these stresses are calculated. It is shown that conservative failure prediction based on an equivalence between inclusion size and crack size is usually acceptable if the shear modulus\u03bc or thermal expansion coefficient\u03b1 for the inclusion is larger than the matrix values. If, however,\u03bc and\u03b1 are smaller for the inclusion than the matrix, extensive cracking can develop at the inclusions which may lead to premature failure. For this case the only effective methods for failure prediction are techniques which give directly the maximum stress intensity factor, i.e., proof testing and/or acoustic emission.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf00552831", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1312116", 
        "issn": [
          "0022-2461", 
          "1573-4811"
        ], 
        "name": "Journal of Materials Science", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "The role of inclusions in the fracture of ceramic materials", 
    "pagination": "1145-1152", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "49733f30aca3b931fcd06a4111df081f697c9cd273fcfec80492a90059b6dc6f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00552831"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015415595"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00552831", 
      "https://app.dimensions.ai/details/publication/pub.1015415595"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130797_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF00552831"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00552831'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00552831'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00552831'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00552831'


 

This table displays all metadata directly associated to this object as RDF triples.

83 TRIPLES      21 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00552831 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Na29bddb9237a41e688c7ee91f5fd94d2
4 schema:citation sg:pub.10.1007/978-1-4615-7014-1_10
5 sg:pub.10.1007/978-1-4615-7014-1_30
6 sg:pub.10.1007/bf00552043
7 sg:pub.10.1007/bf00757910
8 sg:pub.10.1007/bf02642759
9 https://doi.org/10.1111/j.1151-2916.1961.tb15475.x
10 schema:datePublished 1974-07
11 schema:datePublishedReg 1974-07-01
12 schema:description The stress concentrations that occur at inclusions due to thermal expansion and elastic modulus mismatch are discussed and the stress intensity factors at interface cracks that result from these stresses are calculated. It is shown that conservative failure prediction based on an equivalence between inclusion size and crack size is usually acceptable if the shear modulusμ or thermal expansion coefficientα for the inclusion is larger than the matrix values. If, however,μ andα are smaller for the inclusion than the matrix, extensive cracking can develop at the inclusions which may lead to premature failure. For this case the only effective methods for failure prediction are techniques which give directly the maximum stress intensity factor, i.e., proof testing and/or acoustic emission.
13 schema:genre research_article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf Naeb16aecc2934b8396c1fcaa14cad20e
17 Ne675efec19524196b5ecde28e91df5e4
18 sg:journal.1312116
19 schema:name The role of inclusions in the fracture of ceramic materials
20 schema:pagination 1145-1152
21 schema:productId N531bee7889bf4d35929fc268efb6a120
22 N94a55c0826bd4bf3a47ac83e76e819ec
23 Nb2a5d6336f944a08a65f97d6c53ee440
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015415595
25 https://doi.org/10.1007/bf00552831
26 schema:sdDatePublished 2019-04-11T13:50
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher Nf282685213b343189218dcf6496e895e
29 schema:url http://link.springer.com/10.1007/BF00552831
30 sgo:license sg:explorer/license/
31 sgo:sdDataset articles
32 rdf:type schema:ScholarlyArticle
33 N531bee7889bf4d35929fc268efb6a120 schema:name readcube_id
34 schema:value 49733f30aca3b931fcd06a4111df081f697c9cd273fcfec80492a90059b6dc6f
35 rdf:type schema:PropertyValue
36 N94a55c0826bd4bf3a47ac83e76e819ec schema:name dimensions_id
37 schema:value pub.1015415595
38 rdf:type schema:PropertyValue
39 Na21f9304fc5f436a931a94a15b806b8c schema:affiliation https://www.grid.ac/institutes/grid.94225.38
40 schema:familyName Evans
41 schema:givenName A. G.
42 rdf:type schema:Person
43 Na29bddb9237a41e688c7ee91f5fd94d2 rdf:first Na21f9304fc5f436a931a94a15b806b8c
44 rdf:rest rdf:nil
45 Naeb16aecc2934b8396c1fcaa14cad20e schema:issueNumber 7
46 rdf:type schema:PublicationIssue
47 Nb2a5d6336f944a08a65f97d6c53ee440 schema:name doi
48 schema:value 10.1007/bf00552831
49 rdf:type schema:PropertyValue
50 Ne675efec19524196b5ecde28e91df5e4 schema:volumeNumber 9
51 rdf:type schema:PublicationVolume
52 Nf282685213b343189218dcf6496e895e schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
55 schema:name Engineering
56 rdf:type schema:DefinedTerm
57 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
58 schema:name Materials Engineering
59 rdf:type schema:DefinedTerm
60 sg:journal.1312116 schema:issn 0022-2461
61 1573-4811
62 schema:name Journal of Materials Science
63 rdf:type schema:Periodical
64 sg:pub.10.1007/978-1-4615-7014-1_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047342210
65 https://doi.org/10.1007/978-1-4615-7014-1_10
66 rdf:type schema:CreativeWork
67 sg:pub.10.1007/978-1-4615-7014-1_30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052894859
68 https://doi.org/10.1007/978-1-4615-7014-1_30
69 rdf:type schema:CreativeWork
70 sg:pub.10.1007/bf00552043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036826251
71 https://doi.org/10.1007/bf00552043
72 rdf:type schema:CreativeWork
73 sg:pub.10.1007/bf00757910 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039730091
74 https://doi.org/10.1007/bf00757910
75 rdf:type schema:CreativeWork
76 sg:pub.10.1007/bf02642759 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019610646
77 https://doi.org/10.1007/bf02642759
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1111/j.1151-2916.1961.tb15475.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1016371546
80 rdf:type schema:CreativeWork
81 https://www.grid.ac/institutes/grid.94225.38 schema:alternateName National Institute of Standards and Technology
82 schema:name Physical Properties Section, National Bureau of Standards, Washington, D.C., USA
83 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...