Ontology type: schema:ScholarlyArticle
1981-09
AUTHORSRobert A. Davidson
ABSTRACTThe theory of spectral decomposition modulo subgroups of the graph automorphism group is extended to cyclic configurations of arbitrary rotational order. By regarding graphs with cyclic automorphisms as composite polymers of relatively simple monomeric structural units, it is shown that the spectrum of eigenvalues of many prominent molecular and nonmolecular families devolves to consideration of a single monomer-derived reduction network. As the only parameter associated with this network is the set of simple circuit eigenvalues, a direct connection is forged between the spectrum of a circuit and the spectrum of any cyclic array of the same periodicity.In addition to simplifying determination of individual graph spectra, the role of the automorphism reduction network in organizing and uniting disparate aspects of spectral theory is stressed. Systems sharing a subspectrum of identical eigenvalues are readily recognized from the graphic nature of networks. As previously, symbolic and notational devices are devised for greatest economy in the spectral analysis. More... »
PAGES193-231
http://scigraph.springernature.com/pub.10.1007/bf00551119
DOIhttp://dx.doi.org/10.1007/bf00551119
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1040173773
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Chemical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0307",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Theoretical and Computational Chemistry",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Contribution No. 2780 from the Central Research and Development Department, Experimental Station, E. I. du Pont de Nemours and Company, 19898, Wilmington, Delaware, USA",
"id": "http://www.grid.ac/institutes/grid.416832.a",
"name": [
"Contribution No. 2780 from the Central Research and Development Department, Experimental Station, E. I. du Pont de Nemours and Company, 19898, Wilmington, Delaware, USA"
],
"type": "Organization"
},
"familyName": "Davidson",
"givenName": "Robert A.",
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf00929563",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027529625",
"https://doi.org/10.1007/bf00929563"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bfb0070407",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020214121",
"https://doi.org/10.1007/bfb0070407"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02941924",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014048771",
"https://doi.org/10.1007/bf02941924"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-94963-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012034864",
"https://doi.org/10.1007/978-3-642-94963-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00746499",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037713238",
"https://doi.org/10.1007/bf00746499"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bfb0066438",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040747597",
"https://doi.org/10.1007/bfb0066438"
],
"type": "CreativeWork"
}
],
"datePublished": "1981-09",
"datePublishedReg": "1981-09-01",
"description": "The theory of spectral decomposition modulo subgroups of the graph automorphism group is extended to cyclic configurations of arbitrary rotational order. By regarding graphs with cyclic automorphisms as composite polymers of relatively simple monomeric structural units, it is shown that the spectrum of eigenvalues of many prominent molecular and nonmolecular families devolves to consideration of a single monomer-derived reduction network. As the only parameter associated with this network is the set of simple circuit eigenvalues, a direct connection is forged between the spectrum of a circuit and the spectrum of any cyclic array of the same periodicity.In addition to simplifying determination of individual graph spectra, the role of the automorphism reduction network in organizing and uniting disparate aspects of spectral theory is stressed. Systems sharing a subspectrum of identical eigenvalues are readily recognized from the graphic nature of networks. As previously, symbolic and notational devices are devised for greatest economy in the spectral analysis.",
"genre": "article",
"id": "sg:pub.10.1007/bf00551119",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1134081",
"issn": [
"1432-881X",
"1432-2234"
],
"name": "Theoretical Chemistry Accounts",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "3",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "58"
}
],
"keywords": [
"graph automorphism group",
"spectrum of eigenvalues",
"spectral theory",
"graph spectra",
"identical eigenvalues",
"automorphism subgroup",
"cyclic automorphisms",
"automorphism group",
"eigenvalues",
"notational devices",
"graph",
"reduction network",
"graphic nature",
"theory",
"monomeric structural units",
"spectral analysis",
"automorphisms",
"cyclic configurations",
"network",
"rotational order",
"only parameter",
"same periodicity",
"direct connection",
"subspectrum",
"spectra",
"greater economy",
"cyclic array",
"parameters",
"set",
"periodicity",
"configuration",
"structural units",
"system",
"connection",
"circuit",
"array",
"order",
"analysis",
"devices",
"consideration",
"nature",
"disparate aspects",
"determination",
"subgroups",
"aspects",
"family",
"units",
"addition",
"polymers",
"composite polymer",
"group",
"role",
"economy",
"organizing"
],
"name": "Spectral analysis of graphs by cyclic automorphism subgroups",
"pagination": "193-231",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1040173773"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/bf00551119"
]
}
],
"sameAs": [
"https://doi.org/10.1007/bf00551119",
"https://app.dimensions.ai/details/publication/pub.1040173773"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T09:40",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_158.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/bf00551119"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00551119'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00551119'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00551119'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00551119'
This table displays all metadata directly associated to this object as RDF triples.
135 TRIPLES
22 PREDICATES
86 URIs
72 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/bf00551119 | schema:about | anzsrc-for:03 |
2 | ″ | ″ | anzsrc-for:0307 |
3 | ″ | schema:author | N9a28a81c93b3434cb3926cb2c108eacc |
4 | ″ | schema:citation | sg:pub.10.1007/978-3-642-94963-0 |
5 | ″ | ″ | sg:pub.10.1007/bf00746499 |
6 | ″ | ″ | sg:pub.10.1007/bf00929563 |
7 | ″ | ″ | sg:pub.10.1007/bf02941924 |
8 | ″ | ″ | sg:pub.10.1007/bfb0066438 |
9 | ″ | ″ | sg:pub.10.1007/bfb0070407 |
10 | ″ | schema:datePublished | 1981-09 |
11 | ″ | schema:datePublishedReg | 1981-09-01 |
12 | ″ | schema:description | The theory of spectral decomposition modulo subgroups of the graph automorphism group is extended to cyclic configurations of arbitrary rotational order. By regarding graphs with cyclic automorphisms as composite polymers of relatively simple monomeric structural units, it is shown that the spectrum of eigenvalues of many prominent molecular and nonmolecular families devolves to consideration of a single monomer-derived reduction network. As the only parameter associated with this network is the set of simple circuit eigenvalues, a direct connection is forged between the spectrum of a circuit and the spectrum of any cyclic array of the same periodicity.In addition to simplifying determination of individual graph spectra, the role of the automorphism reduction network in organizing and uniting disparate aspects of spectral theory is stressed. Systems sharing a subspectrum of identical eigenvalues are readily recognized from the graphic nature of networks. As previously, symbolic and notational devices are devised for greatest economy in the spectral analysis. |
13 | ″ | schema:genre | article |
14 | ″ | schema:inLanguage | en |
15 | ″ | schema:isAccessibleForFree | false |
16 | ″ | schema:isPartOf | N271ce6544391405cb064445e745e87bb |
17 | ″ | ″ | N5d48166a4f5e42d5b2108ad48a4cdfc4 |
18 | ″ | ″ | sg:journal.1134081 |
19 | ″ | schema:keywords | addition |
20 | ″ | ″ | analysis |
21 | ″ | ″ | array |
22 | ″ | ″ | aspects |
23 | ″ | ″ | automorphism group |
24 | ″ | ″ | automorphism subgroup |
25 | ″ | ″ | automorphisms |
26 | ″ | ″ | circuit |
27 | ″ | ″ | composite polymer |
28 | ″ | ″ | configuration |
29 | ″ | ″ | connection |
30 | ″ | ″ | consideration |
31 | ″ | ″ | cyclic array |
32 | ″ | ″ | cyclic automorphisms |
33 | ″ | ″ | cyclic configurations |
34 | ″ | ″ | determination |
35 | ″ | ″ | devices |
36 | ″ | ″ | direct connection |
37 | ″ | ″ | disparate aspects |
38 | ″ | ″ | economy |
39 | ″ | ″ | eigenvalues |
40 | ″ | ″ | family |
41 | ″ | ″ | graph |
42 | ″ | ″ | graph automorphism group |
43 | ″ | ″ | graph spectra |
44 | ″ | ″ | graphic nature |
45 | ″ | ″ | greater economy |
46 | ″ | ″ | group |
47 | ″ | ″ | identical eigenvalues |
48 | ″ | ″ | monomeric structural units |
49 | ″ | ″ | nature |
50 | ″ | ″ | network |
51 | ″ | ″ | notational devices |
52 | ″ | ″ | only parameter |
53 | ″ | ″ | order |
54 | ″ | ″ | organizing |
55 | ″ | ″ | parameters |
56 | ″ | ″ | periodicity |
57 | ″ | ″ | polymers |
58 | ″ | ″ | reduction network |
59 | ″ | ″ | role |
60 | ″ | ″ | rotational order |
61 | ″ | ″ | same periodicity |
62 | ″ | ″ | set |
63 | ″ | ″ | spectra |
64 | ″ | ″ | spectral analysis |
65 | ″ | ″ | spectral theory |
66 | ″ | ″ | spectrum of eigenvalues |
67 | ″ | ″ | structural units |
68 | ″ | ″ | subgroups |
69 | ″ | ″ | subspectrum |
70 | ″ | ″ | system |
71 | ″ | ″ | theory |
72 | ″ | ″ | units |
73 | ″ | schema:name | Spectral analysis of graphs by cyclic automorphism subgroups |
74 | ″ | schema:pagination | 193-231 |
75 | ″ | schema:productId | Na1d99118751641f0a13ee98edd2ff1be |
76 | ″ | ″ | Nf1d2b6fda79543ea8458fb08cadf190d |
77 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1040173773 |
78 | ″ | ″ | https://doi.org/10.1007/bf00551119 |
79 | ″ | schema:sdDatePublished | 2022-05-10T09:40 |
80 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
81 | ″ | schema:sdPublisher | N729679f6eb3246c19a6f6752f704d006 |
82 | ″ | schema:url | https://doi.org/10.1007/bf00551119 |
83 | ″ | sgo:license | sg:explorer/license/ |
84 | ″ | sgo:sdDataset | articles |
85 | ″ | rdf:type | schema:ScholarlyArticle |
86 | N271ce6544391405cb064445e745e87bb | schema:issueNumber | 3 |
87 | ″ | rdf:type | schema:PublicationIssue |
88 | N5d48166a4f5e42d5b2108ad48a4cdfc4 | schema:volumeNumber | 58 |
89 | ″ | rdf:type | schema:PublicationVolume |
90 | N729679f6eb3246c19a6f6752f704d006 | schema:name | Springer Nature - SN SciGraph project |
91 | ″ | rdf:type | schema:Organization |
92 | N7b2d0e3b08594e9ca8d304fe645bdc79 | schema:affiliation | grid-institutes:grid.416832.a |
93 | ″ | schema:familyName | Davidson |
94 | ″ | schema:givenName | Robert A. |
95 | ″ | rdf:type | schema:Person |
96 | N9a28a81c93b3434cb3926cb2c108eacc | rdf:first | N7b2d0e3b08594e9ca8d304fe645bdc79 |
97 | ″ | rdf:rest | rdf:nil |
98 | Na1d99118751641f0a13ee98edd2ff1be | schema:name | doi |
99 | ″ | schema:value | 10.1007/bf00551119 |
100 | ″ | rdf:type | schema:PropertyValue |
101 | Nf1d2b6fda79543ea8458fb08cadf190d | schema:name | dimensions_id |
102 | ″ | schema:value | pub.1040173773 |
103 | ″ | rdf:type | schema:PropertyValue |
104 | anzsrc-for:03 | schema:inDefinedTermSet | anzsrc-for: |
105 | ″ | schema:name | Chemical Sciences |
106 | ″ | rdf:type | schema:DefinedTerm |
107 | anzsrc-for:0307 | schema:inDefinedTermSet | anzsrc-for: |
108 | ″ | schema:name | Theoretical and Computational Chemistry |
109 | ″ | rdf:type | schema:DefinedTerm |
110 | sg:journal.1134081 | schema:issn | 1432-2234 |
111 | ″ | ″ | 1432-881X |
112 | ″ | schema:name | Theoretical Chemistry Accounts |
113 | ″ | schema:publisher | Springer Nature |
114 | ″ | rdf:type | schema:Periodical |
115 | sg:pub.10.1007/978-3-642-94963-0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1012034864 |
116 | ″ | ″ | https://doi.org/10.1007/978-3-642-94963-0 |
117 | ″ | rdf:type | schema:CreativeWork |
118 | sg:pub.10.1007/bf00746499 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1037713238 |
119 | ″ | ″ | https://doi.org/10.1007/bf00746499 |
120 | ″ | rdf:type | schema:CreativeWork |
121 | sg:pub.10.1007/bf00929563 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1027529625 |
122 | ″ | ″ | https://doi.org/10.1007/bf00929563 |
123 | ″ | rdf:type | schema:CreativeWork |
124 | sg:pub.10.1007/bf02941924 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1014048771 |
125 | ″ | ″ | https://doi.org/10.1007/bf02941924 |
126 | ″ | rdf:type | schema:CreativeWork |
127 | sg:pub.10.1007/bfb0066438 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1040747597 |
128 | ″ | ″ | https://doi.org/10.1007/bfb0066438 |
129 | ″ | rdf:type | schema:CreativeWork |
130 | sg:pub.10.1007/bfb0070407 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1020214121 |
131 | ″ | ″ | https://doi.org/10.1007/bfb0070407 |
132 | ″ | rdf:type | schema:CreativeWork |
133 | grid-institutes:grid.416832.a | schema:alternateName | Contribution No. 2780 from the Central Research and Development Department, Experimental Station, E. I. du Pont de Nemours and Company, 19898, Wilmington, Delaware, USA |
134 | ″ | schema:name | Contribution No. 2780 from the Central Research and Development Department, Experimental Station, E. I. du Pont de Nemours and Company, 19898, Wilmington, Delaware, USA |
135 | ″ | rdf:type | schema:Organization |