Spectral analysis of graphs by cyclic automorphism subgroups View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1981-09

AUTHORS

Robert A. Davidson

ABSTRACT

The theory of spectral decomposition modulo subgroups of the graph automorphism group is extended to cyclic configurations of arbitrary rotational order. By regarding graphs with cyclic automorphisms as composite polymers of relatively simple monomeric structural units, it is shown that the spectrum of eigenvalues of many prominent molecular and nonmolecular families devolves to consideration of a single monomer-derived reduction network. As the only parameter associated with this network is the set of simple circuit eigenvalues, a direct connection is forged between the spectrum of a circuit and the spectrum of any cyclic array of the same periodicity.In addition to simplifying determination of individual graph spectra, the role of the automorphism reduction network in organizing and uniting disparate aspects of spectral theory is stressed. Systems sharing a subspectrum of identical eigenvalues are readily recognized from the graphic nature of networks. As previously, symbolic and notational devices are devised for greatest economy in the spectral analysis. More... »

PAGES

193-231

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00551119

DOI

http://dx.doi.org/10.1007/bf00551119

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040173773


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0307", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Theoretical and Computational Chemistry", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Contribution No. 2780 from the Central Research and Development Department, Experimental Station, E. I. du Pont de Nemours and Company, 19898, Wilmington, Delaware, USA", 
          "id": "http://www.grid.ac/institutes/grid.416832.a", 
          "name": [
            "Contribution No. 2780 from the Central Research and Development Department, Experimental Station, E. I. du Pont de Nemours and Company, 19898, Wilmington, Delaware, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Davidson", 
        "givenName": "Robert A.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-94963-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012034864", 
          "https://doi.org/10.1007/978-3-642-94963-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00929563", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027529625", 
          "https://doi.org/10.1007/bf00929563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02941924", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014048771", 
          "https://doi.org/10.1007/bf02941924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0070407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020214121", 
          "https://doi.org/10.1007/bfb0070407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0066438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040747597", 
          "https://doi.org/10.1007/bfb0066438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00746499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037713238", 
          "https://doi.org/10.1007/bf00746499"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1981-09", 
    "datePublishedReg": "1981-09-01", 
    "description": "The theory of spectral decomposition modulo subgroups of the graph automorphism group is extended to cyclic configurations of arbitrary rotational order. By regarding graphs with cyclic automorphisms as composite polymers of relatively simple monomeric structural units, it is shown that the spectrum of eigenvalues of many prominent molecular and nonmolecular families devolves to consideration of a single monomer-derived reduction network. As the only parameter associated with this network is the set of simple circuit eigenvalues, a direct connection is forged between the spectrum of a circuit and the spectrum of any cyclic array of the same periodicity.In addition to simplifying determination of individual graph spectra, the role of the automorphism reduction network in organizing and uniting disparate aspects of spectral theory is stressed. Systems sharing a subspectrum of identical eigenvalues are readily recognized from the graphic nature of networks. As previously, symbolic and notational devices are devised for greatest economy in the spectral analysis.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf00551119", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1134081", 
        "issn": [
          "1432-881X", 
          "1432-2234"
        ], 
        "name": "Theoretical Chemistry Accounts", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "58"
      }
    ], 
    "keywords": [
      "graph automorphism group", 
      "spectrum of eigenvalues", 
      "spectral theory", 
      "graph spectra", 
      "identical eigenvalues", 
      "automorphism subgroup", 
      "cyclic automorphisms", 
      "automorphism group", 
      "eigenvalues", 
      "notational devices", 
      "graph", 
      "reduction network", 
      "graphic nature", 
      "theory", 
      "monomeric structural units", 
      "spectral analysis", 
      "automorphisms", 
      "cyclic configurations", 
      "network", 
      "rotational order", 
      "only parameter", 
      "same periodicity", 
      "direct connection", 
      "subspectrum", 
      "spectra", 
      "greater economy", 
      "cyclic array", 
      "parameters", 
      "set", 
      "periodicity", 
      "configuration", 
      "structural units", 
      "system", 
      "connection", 
      "circuit", 
      "array", 
      "order", 
      "analysis", 
      "devices", 
      "consideration", 
      "nature", 
      "disparate aspects", 
      "determination", 
      "subgroups", 
      "aspects", 
      "family", 
      "units", 
      "addition", 
      "polymers", 
      "composite polymer", 
      "group", 
      "role", 
      "economy", 
      "organizing"
    ], 
    "name": "Spectral analysis of graphs by cyclic automorphism subgroups", 
    "pagination": "193-231", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040173773"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00551119"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00551119", 
      "https://app.dimensions.ai/details/publication/pub.1040173773"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_158.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf00551119"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00551119'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00551119'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00551119'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00551119'


 

This table displays all metadata directly associated to this object as RDF triples.

135 TRIPLES      22 PREDICATES      86 URIs      72 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00551119 schema:about anzsrc-for:03
2 anzsrc-for:0307
3 schema:author N2baf1fca22b44a30adfcb21633faa957
4 schema:citation sg:pub.10.1007/978-3-642-94963-0
5 sg:pub.10.1007/bf00746499
6 sg:pub.10.1007/bf00929563
7 sg:pub.10.1007/bf02941924
8 sg:pub.10.1007/bfb0066438
9 sg:pub.10.1007/bfb0070407
10 schema:datePublished 1981-09
11 schema:datePublishedReg 1981-09-01
12 schema:description The theory of spectral decomposition modulo subgroups of the graph automorphism group is extended to cyclic configurations of arbitrary rotational order. By regarding graphs with cyclic automorphisms as composite polymers of relatively simple monomeric structural units, it is shown that the spectrum of eigenvalues of many prominent molecular and nonmolecular families devolves to consideration of a single monomer-derived reduction network. As the only parameter associated with this network is the set of simple circuit eigenvalues, a direct connection is forged between the spectrum of a circuit and the spectrum of any cyclic array of the same periodicity.In addition to simplifying determination of individual graph spectra, the role of the automorphism reduction network in organizing and uniting disparate aspects of spectral theory is stressed. Systems sharing a subspectrum of identical eigenvalues are readily recognized from the graphic nature of networks. As previously, symbolic and notational devices are devised for greatest economy in the spectral analysis.
13 schema:genre article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N34d3604755484c6bb9bd520108c75dec
17 N3f73d449a9f5478e824670d666f0661d
18 sg:journal.1134081
19 schema:keywords addition
20 analysis
21 array
22 aspects
23 automorphism group
24 automorphism subgroup
25 automorphisms
26 circuit
27 composite polymer
28 configuration
29 connection
30 consideration
31 cyclic array
32 cyclic automorphisms
33 cyclic configurations
34 determination
35 devices
36 direct connection
37 disparate aspects
38 economy
39 eigenvalues
40 family
41 graph
42 graph automorphism group
43 graph spectra
44 graphic nature
45 greater economy
46 group
47 identical eigenvalues
48 monomeric structural units
49 nature
50 network
51 notational devices
52 only parameter
53 order
54 organizing
55 parameters
56 periodicity
57 polymers
58 reduction network
59 role
60 rotational order
61 same periodicity
62 set
63 spectra
64 spectral analysis
65 spectral theory
66 spectrum of eigenvalues
67 structural units
68 subgroups
69 subspectrum
70 system
71 theory
72 units
73 schema:name Spectral analysis of graphs by cyclic automorphism subgroups
74 schema:pagination 193-231
75 schema:productId N5291c00267534dc0a9ac2456ef39b02b
76 Nb04f65f2af874fff858fb59deeb5f0be
77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040173773
78 https://doi.org/10.1007/bf00551119
79 schema:sdDatePublished 2022-05-20T07:17
80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
81 schema:sdPublisher N934352e28d40467a8d2d05ed73255a51
82 schema:url https://doi.org/10.1007/bf00551119
83 sgo:license sg:explorer/license/
84 sgo:sdDataset articles
85 rdf:type schema:ScholarlyArticle
86 N2baf1fca22b44a30adfcb21633faa957 rdf:first Nf3baba2f505247719c72aef33e05816a
87 rdf:rest rdf:nil
88 N34d3604755484c6bb9bd520108c75dec schema:issueNumber 3
89 rdf:type schema:PublicationIssue
90 N3f73d449a9f5478e824670d666f0661d schema:volumeNumber 58
91 rdf:type schema:PublicationVolume
92 N5291c00267534dc0a9ac2456ef39b02b schema:name dimensions_id
93 schema:value pub.1040173773
94 rdf:type schema:PropertyValue
95 N934352e28d40467a8d2d05ed73255a51 schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 Nb04f65f2af874fff858fb59deeb5f0be schema:name doi
98 schema:value 10.1007/bf00551119
99 rdf:type schema:PropertyValue
100 Nf3baba2f505247719c72aef33e05816a schema:affiliation grid-institutes:grid.416832.a
101 schema:familyName Davidson
102 schema:givenName Robert A.
103 rdf:type schema:Person
104 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
105 schema:name Chemical Sciences
106 rdf:type schema:DefinedTerm
107 anzsrc-for:0307 schema:inDefinedTermSet anzsrc-for:
108 schema:name Theoretical and Computational Chemistry
109 rdf:type schema:DefinedTerm
110 sg:journal.1134081 schema:issn 1432-2234
111 1432-881X
112 schema:name Theoretical Chemistry Accounts
113 schema:publisher Springer Nature
114 rdf:type schema:Periodical
115 sg:pub.10.1007/978-3-642-94963-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012034864
116 https://doi.org/10.1007/978-3-642-94963-0
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/bf00746499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037713238
119 https://doi.org/10.1007/bf00746499
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/bf00929563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027529625
122 https://doi.org/10.1007/bf00929563
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/bf02941924 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014048771
125 https://doi.org/10.1007/bf02941924
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/bfb0066438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040747597
128 https://doi.org/10.1007/bfb0066438
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/bfb0070407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020214121
131 https://doi.org/10.1007/bfb0070407
132 rdf:type schema:CreativeWork
133 grid-institutes:grid.416832.a schema:alternateName Contribution No. 2780 from the Central Research and Development Department, Experimental Station, E. I. du Pont de Nemours and Company, 19898, Wilmington, Delaware, USA
134 schema:name Contribution No. 2780 from the Central Research and Development Department, Experimental Station, E. I. du Pont de Nemours and Company, 19898, Wilmington, Delaware, USA
135 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...