A new paradigm for hypothesis testing in medicine, with examination of the Neyman Pearson condition View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1986-10

AUTHORS

G. William Moore, Grover M. Hutchins, Robert E. Miller

ABSTRACT

In the past, hypothesis testing in medicine has employed the paradigm of the repeatable experiment. In statistical hypothesis testing, an unbiased sample is drawn from a larger source population, and a calculated statistic is compared to a preassigned critical region, on the assumption that the comparison could be repeated an indefinite number of times. However, repeated experiments often cannot be performed on human beings, due to ethical or economic constraints. We describe a new paradigm for hypothesis testing which uses only rearrangements of data present within the observed data set. The token swap test, based on this new paradigm, is applied to three data sets from cardiovascular pathology, and computational experiments suggest that the token swap test satisfies the Neyman Pearson condition. More... »

PAGES

269-282

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00539848

DOI

http://dx.doi.org/10.1007/bf00539848

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001064870

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/3798393


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Communication Networks", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Department of Pathology, The Johns Hopkins Medical Institutions, 21205, Baltimore, Maryland, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moore", 
        "givenName": "G. William", 
        "id": "sg:person.01032646746.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032646746.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Department of Pathology, The Johns Hopkins Medical Institutions, 21205, Baltimore, Maryland, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hutchins", 
        "givenName": "Grover M.", 
        "id": "sg:person.0743327605.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743327605.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Johns Hopkins University", 
          "id": "https://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Department of Pathology, The Johns Hopkins Medical Institutions, 21205, Baltimore, Maryland, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miller", 
        "givenName": "Robert E.", 
        "id": "sg:person.01024061721.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024061721.40"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1136/bmj.2.4849.1284", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005441508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm198405243102111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008259187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0010-4809(83)90025-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008558902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0010-4809(83)90025-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008558902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0025-5564(82)90086-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009054966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00489476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009733289", 
          "https://doi.org/10.1007/bf00489476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00489476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009733289", 
          "https://doi.org/10.1007/bf00489476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0002-9343(86)90007-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015240840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm198405243102141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019601182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm197808172990704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030767456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm198511143132005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035590854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0002-9343(81)90759-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037625485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm198406213102506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044393800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm198405243102106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046521661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm198212233072604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047183208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/scientificamerican0583-116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056542148", 
          "https://doi.org/10.1038/scientificamerican0583-116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1021092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062861414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074409613", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/22.4.719", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075910802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3002000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078266745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079984248", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1081755083", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1081811571", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1986-10", 
    "datePublishedReg": "1986-10-01", 
    "description": "In the past, hypothesis testing in medicine has employed the paradigm of the repeatable experiment. In statistical hypothesis testing, an unbiased sample is drawn from a larger source population, and a calculated statistic is compared to a preassigned critical region, on the assumption that the comparison could be repeated an indefinite number of times. However, repeated experiments often cannot be performed on human beings, due to ethical or economic constraints. We describe a new paradigm for hypothesis testing which uses only rearrangements of data present within the observed data set. The token swap test, based on this new paradigm, is applied to three data sets from cardiovascular pathology, and computational experiments suggest that the token swap test satisfies the Neyman Pearson condition.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf00539848", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1091515", 
        "issn": [
          "1386-7415", 
          "1573-0980"
        ], 
        "name": "Theoretical Medicine and Bioethics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "7"
      }
    ], 
    "name": "A new paradigm for hypothesis testing in medicine, with examination of the Neyman Pearson condition", 
    "pagination": "269-282", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00539848"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "05129dac5af529f86e8c9d105eedfeb6cd51b7bd48115f0f0ca1a7810f3d0e54"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001064870"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8405140"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "3798393"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00539848", 
      "https://app.dimensions.ai/details/publication/pub.1001064870"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T08:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000375_0000000375/records_91432_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF00539848"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00539848'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00539848'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00539848'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00539848'


 

This table displays all metadata directly associated to this object as RDF triples.

156 TRIPLES      21 PREDICATES      53 URIs      24 LITERALS      12 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00539848 schema:about N587134da5c2d40f381e2d5435939655e
2 N7aef704e9efc4abf8d410029942862da
3 N9675879ffa32479d9df79031322517e0
4 anzsrc-for:08
5 anzsrc-for:0801
6 schema:author Nd9ab2b09785b4a4e860fc4f6e6ecc243
7 schema:citation sg:pub.10.1007/bf00489476
8 sg:pub.10.1038/scientificamerican0583-116
9 https://app.dimensions.ai/details/publication/pub.1074409613
10 https://app.dimensions.ai/details/publication/pub.1079984248
11 https://app.dimensions.ai/details/publication/pub.1081755083
12 https://app.dimensions.ai/details/publication/pub.1081811571
13 https://doi.org/10.1016/0002-9343(81)90759-2
14 https://doi.org/10.1016/0002-9343(86)90007-0
15 https://doi.org/10.1016/0010-4809(83)90025-3
16 https://doi.org/10.1016/0025-5564(82)90086-4
17 https://doi.org/10.1056/nejm197808172990704
18 https://doi.org/10.1056/nejm198212233072604
19 https://doi.org/10.1056/nejm198405243102106
20 https://doi.org/10.1056/nejm198405243102111
21 https://doi.org/10.1056/nejm198405243102141
22 https://doi.org/10.1056/nejm198406213102506
23 https://doi.org/10.1056/nejm198511143132005
24 https://doi.org/10.1093/jnci/22.4.719
25 https://doi.org/10.1136/bmj.2.4849.1284
26 https://doi.org/10.1137/1021092
27 https://doi.org/10.2307/3002000
28 schema:datePublished 1986-10
29 schema:datePublishedReg 1986-10-01
30 schema:description In the past, hypothesis testing in medicine has employed the paradigm of the repeatable experiment. In statistical hypothesis testing, an unbiased sample is drawn from a larger source population, and a calculated statistic is compared to a preassigned critical region, on the assumption that the comparison could be repeated an indefinite number of times. However, repeated experiments often cannot be performed on human beings, due to ethical or economic constraints. We describe a new paradigm for hypothesis testing which uses only rearrangements of data present within the observed data set. The token swap test, based on this new paradigm, is applied to three data sets from cardiovascular pathology, and computational experiments suggest that the token swap test satisfies the Neyman Pearson condition.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree false
34 schema:isPartOf N0b37d589ea204e4eab68e47c391cacf0
35 N9f8ebdc9918949d8893b2a01878823e4
36 sg:journal.1091515
37 schema:name A new paradigm for hypothesis testing in medicine, with examination of the Neyman Pearson condition
38 schema:pagination 269-282
39 schema:productId N3475f353f7e846c18b98ad26d08c63d2
40 N6bb2e6c3893d488594c3d3bfb0df6035
41 N84585bd994e44c0eb1eb15211b20344c
42 N8854ba850bd84be6b51b41590c12e7f6
43 Ne71123e7736c4e70882f480eb55611ea
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001064870
45 https://doi.org/10.1007/bf00539848
46 schema:sdDatePublished 2019-04-15T08:59
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher Nfd79d376590249eaa81dd5f524dcdf29
49 schema:url http://link.springer.com/10.1007/BF00539848
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N0b37d589ea204e4eab68e47c391cacf0 schema:issueNumber 3
54 rdf:type schema:PublicationIssue
55 N3475f353f7e846c18b98ad26d08c63d2 schema:name dimensions_id
56 schema:value pub.1001064870
57 rdf:type schema:PropertyValue
58 N587134da5c2d40f381e2d5435939655e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
59 schema:name Computer Communication Networks
60 rdf:type schema:DefinedTerm
61 N6bb2e6c3893d488594c3d3bfb0df6035 schema:name nlm_unique_id
62 schema:value 8405140
63 rdf:type schema:PropertyValue
64 N7aef704e9efc4abf8d410029942862da schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
65 schema:name Models, Theoretical
66 rdf:type schema:DefinedTerm
67 N84585bd994e44c0eb1eb15211b20344c schema:name doi
68 schema:value 10.1007/bf00539848
69 rdf:type schema:PropertyValue
70 N8854ba850bd84be6b51b41590c12e7f6 schema:name pubmed_id
71 schema:value 3798393
72 rdf:type schema:PropertyValue
73 N9394d0ba755246bcb0d246dee70847b9 rdf:first sg:person.0743327605.00
74 rdf:rest Ne62e7fe32fa44e54a70adc78a6737022
75 N9675879ffa32479d9df79031322517e0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Computer Simulation
77 rdf:type schema:DefinedTerm
78 N9f8ebdc9918949d8893b2a01878823e4 schema:volumeNumber 7
79 rdf:type schema:PublicationVolume
80 Nd9ab2b09785b4a4e860fc4f6e6ecc243 rdf:first sg:person.01032646746.00
81 rdf:rest N9394d0ba755246bcb0d246dee70847b9
82 Ne62e7fe32fa44e54a70adc78a6737022 rdf:first sg:person.01024061721.40
83 rdf:rest rdf:nil
84 Ne71123e7736c4e70882f480eb55611ea schema:name readcube_id
85 schema:value 05129dac5af529f86e8c9d105eedfeb6cd51b7bd48115f0f0ca1a7810f3d0e54
86 rdf:type schema:PropertyValue
87 Nfd79d376590249eaa81dd5f524dcdf29 schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
90 schema:name Information and Computing Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
93 schema:name Artificial Intelligence and Image Processing
94 rdf:type schema:DefinedTerm
95 sg:journal.1091515 schema:issn 1386-7415
96 1573-0980
97 schema:name Theoretical Medicine and Bioethics
98 rdf:type schema:Periodical
99 sg:person.01024061721.40 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
100 schema:familyName Miller
101 schema:givenName Robert E.
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024061721.40
103 rdf:type schema:Person
104 sg:person.01032646746.00 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
105 schema:familyName Moore
106 schema:givenName G. William
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032646746.00
108 rdf:type schema:Person
109 sg:person.0743327605.00 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
110 schema:familyName Hutchins
111 schema:givenName Grover M.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743327605.00
113 rdf:type schema:Person
114 sg:pub.10.1007/bf00489476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009733289
115 https://doi.org/10.1007/bf00489476
116 rdf:type schema:CreativeWork
117 sg:pub.10.1038/scientificamerican0583-116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056542148
118 https://doi.org/10.1038/scientificamerican0583-116
119 rdf:type schema:CreativeWork
120 https://app.dimensions.ai/details/publication/pub.1074409613 schema:CreativeWork
121 https://app.dimensions.ai/details/publication/pub.1079984248 schema:CreativeWork
122 https://app.dimensions.ai/details/publication/pub.1081755083 schema:CreativeWork
123 https://app.dimensions.ai/details/publication/pub.1081811571 schema:CreativeWork
124 https://doi.org/10.1016/0002-9343(81)90759-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037625485
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/0002-9343(86)90007-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015240840
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/0010-4809(83)90025-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008558902
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/0025-5564(82)90086-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009054966
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1056/nejm197808172990704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030767456
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1056/nejm198212233072604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047183208
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1056/nejm198405243102106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046521661
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1056/nejm198405243102111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008259187
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1056/nejm198405243102141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019601182
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1056/nejm198406213102506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044393800
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1056/nejm198511143132005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035590854
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1093/jnci/22.4.719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075910802
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1136/bmj.2.4849.1284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005441508
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1137/1021092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062861414
151 rdf:type schema:CreativeWork
152 https://doi.org/10.2307/3002000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078266745
153 rdf:type schema:CreativeWork
154 https://www.grid.ac/institutes/grid.21107.35 schema:alternateName Johns Hopkins University
155 schema:name Department of Pathology, The Johns Hopkins Medical Institutions, 21205, Baltimore, Maryland, USA
156 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...