A new paradigm for hypothesis testing in medicine, with examination of the Neyman Pearson condition View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1986-10

AUTHORS

G. William Moore, Grover M. Hutchins, Robert E. Miller

ABSTRACT

In the past, hypothesis testing in medicine has employed the paradigm of the repeatable experiment. In statistical hypothesis testing, an unbiased sample is drawn from a larger source population, and a calculated statistic is compared to a preassigned critical region, on the assumption that the comparison could be repeated an indefinite number of times. However, repeated experiments often cannot be performed on human beings, due to ethical or economic constraints. We describe a new paradigm for hypothesis testing which uses only rearrangements of data present within the observed data set. The token swap test, based on this new paradigm, is applied to three data sets from cardiovascular pathology, and computational experiments suggest that the token swap test satisfies the Neyman Pearson condition. More... »

PAGES

269-282

References to SciGraph publications

  • 1984-10. Compensatory neoplasia: Chronic erythrocytosis and neuroblastic tumors in THEORETICAL MEDICINE AND BIOETHICS
  • 1983-05. Computer-Intensive Methods in Statistics in SCIENTIFIC AMERICAN
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf00539848

    DOI

    http://dx.doi.org/10.1007/bf00539848

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1001064870

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/3798393


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computer Communication Networks", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computer Simulation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Theoretical", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Johns Hopkins University", 
              "id": "https://www.grid.ac/institutes/grid.21107.35", 
              "name": [
                "Department of Pathology, The Johns Hopkins Medical Institutions, 21205, Baltimore, Maryland, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Moore", 
            "givenName": "G. William", 
            "id": "sg:person.01032646746.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032646746.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Johns Hopkins University", 
              "id": "https://www.grid.ac/institutes/grid.21107.35", 
              "name": [
                "Department of Pathology, The Johns Hopkins Medical Institutions, 21205, Baltimore, Maryland, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hutchins", 
            "givenName": "Grover M.", 
            "id": "sg:person.0743327605.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743327605.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Johns Hopkins University", 
              "id": "https://www.grid.ac/institutes/grid.21107.35", 
              "name": [
                "Department of Pathology, The Johns Hopkins Medical Institutions, 21205, Baltimore, Maryland, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Miller", 
            "givenName": "Robert E.", 
            "id": "sg:person.01024061721.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024061721.40"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1136/bmj.2.4849.1284", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005441508"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1056/nejm198405243102111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008259187"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0010-4809(83)90025-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008558902"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0010-4809(83)90025-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008558902"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0025-5564(82)90086-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009054966"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00489476", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009733289", 
              "https://doi.org/10.1007/bf00489476"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00489476", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009733289", 
              "https://doi.org/10.1007/bf00489476"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0002-9343(86)90007-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015240840"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1056/nejm198405243102141", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019601182"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1056/nejm197808172990704", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030767456"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1056/nejm198511143132005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035590854"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0002-9343(81)90759-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037625485"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1056/nejm198406213102506", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044393800"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1056/nejm198405243102106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046521661"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1056/nejm198212233072604", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047183208"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/scientificamerican0583-116", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056542148", 
              "https://doi.org/10.1038/scientificamerican0583-116"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/1021092", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062861414"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074409613", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/jnci/22.4.719", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1075910802"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/3002000", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1078266745"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1079984248", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1081755083", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1081811571", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1986-10", 
        "datePublishedReg": "1986-10-01", 
        "description": "In the past, hypothesis testing in medicine has employed the paradigm of the repeatable experiment. In statistical hypothesis testing, an unbiased sample is drawn from a larger source population, and a calculated statistic is compared to a preassigned critical region, on the assumption that the comparison could be repeated an indefinite number of times. However, repeated experiments often cannot be performed on human beings, due to ethical or economic constraints. We describe a new paradigm for hypothesis testing which uses only rearrangements of data present within the observed data set. The token swap test, based on this new paradigm, is applied to three data sets from cardiovascular pathology, and computational experiments suggest that the token swap test satisfies the Neyman Pearson condition.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf00539848", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1091515", 
            "issn": [
              "1386-7415", 
              "1573-0980"
            ], 
            "name": "Theoretical Medicine and Bioethics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "7"
          }
        ], 
        "name": "A new paradigm for hypothesis testing in medicine, with examination of the Neyman Pearson condition", 
        "pagination": "269-282", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf00539848"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "05129dac5af529f86e8c9d105eedfeb6cd51b7bd48115f0f0ca1a7810f3d0e54"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1001064870"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "8405140"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "3798393"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf00539848", 
          "https://app.dimensions.ai/details/publication/pub.1001064870"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-15T08:59", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000375_0000000375/records_91432_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF00539848"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00539848'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00539848'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00539848'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00539848'


     

    This table displays all metadata directly associated to this object as RDF triples.

    156 TRIPLES      21 PREDICATES      53 URIs      24 LITERALS      12 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf00539848 schema:about N65372aeed8c3457ab94664a6d529e962
    2 N6a612432b49348a6a50fda07e8cc1068
    3 N6ecb36dabc9e493d8cf4a86672406745
    4 anzsrc-for:08
    5 anzsrc-for:0801
    6 schema:author N3ccb2c52f0ee4d57a5c2ad0f42e9b913
    7 schema:citation sg:pub.10.1007/bf00489476
    8 sg:pub.10.1038/scientificamerican0583-116
    9 https://app.dimensions.ai/details/publication/pub.1074409613
    10 https://app.dimensions.ai/details/publication/pub.1079984248
    11 https://app.dimensions.ai/details/publication/pub.1081755083
    12 https://app.dimensions.ai/details/publication/pub.1081811571
    13 https://doi.org/10.1016/0002-9343(81)90759-2
    14 https://doi.org/10.1016/0002-9343(86)90007-0
    15 https://doi.org/10.1016/0010-4809(83)90025-3
    16 https://doi.org/10.1016/0025-5564(82)90086-4
    17 https://doi.org/10.1056/nejm197808172990704
    18 https://doi.org/10.1056/nejm198212233072604
    19 https://doi.org/10.1056/nejm198405243102106
    20 https://doi.org/10.1056/nejm198405243102111
    21 https://doi.org/10.1056/nejm198405243102141
    22 https://doi.org/10.1056/nejm198406213102506
    23 https://doi.org/10.1056/nejm198511143132005
    24 https://doi.org/10.1093/jnci/22.4.719
    25 https://doi.org/10.1136/bmj.2.4849.1284
    26 https://doi.org/10.1137/1021092
    27 https://doi.org/10.2307/3002000
    28 schema:datePublished 1986-10
    29 schema:datePublishedReg 1986-10-01
    30 schema:description In the past, hypothesis testing in medicine has employed the paradigm of the repeatable experiment. In statistical hypothesis testing, an unbiased sample is drawn from a larger source population, and a calculated statistic is compared to a preassigned critical region, on the assumption that the comparison could be repeated an indefinite number of times. However, repeated experiments often cannot be performed on human beings, due to ethical or economic constraints. We describe a new paradigm for hypothesis testing which uses only rearrangements of data present within the observed data set. The token swap test, based on this new paradigm, is applied to three data sets from cardiovascular pathology, and computational experiments suggest that the token swap test satisfies the Neyman Pearson condition.
    31 schema:genre research_article
    32 schema:inLanguage en
    33 schema:isAccessibleForFree false
    34 schema:isPartOf N0e1dba229cbd43bd9942e58036a2b579
    35 N485f7f61429a494d9c3b9acb86d61d8a
    36 sg:journal.1091515
    37 schema:name A new paradigm for hypothesis testing in medicine, with examination of the Neyman Pearson condition
    38 schema:pagination 269-282
    39 schema:productId N3b142d8af313426cb542d6e03b18e0d1
    40 N6d743b9676f345678b8b3bba99b3db9a
    41 Nc1a1e4699d914c4f9b10f8f613abff43
    42 Ncbe4f6375cd24657a400a936a72bf5cc
    43 Nfd61444dcdd846e49bb85224a1726010
    44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001064870
    45 https://doi.org/10.1007/bf00539848
    46 schema:sdDatePublished 2019-04-15T08:59
    47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    48 schema:sdPublisher Nf7010d4d4384494cbcc6eaa61dc3f362
    49 schema:url http://link.springer.com/10.1007/BF00539848
    50 sgo:license sg:explorer/license/
    51 sgo:sdDataset articles
    52 rdf:type schema:ScholarlyArticle
    53 N0e1dba229cbd43bd9942e58036a2b579 schema:volumeNumber 7
    54 rdf:type schema:PublicationVolume
    55 N30bd766d8b2f44c0bb54f25d5bd990a8 rdf:first sg:person.0743327605.00
    56 rdf:rest N32ecdba75d9a475ca1cd8a59bfb36f42
    57 N32ecdba75d9a475ca1cd8a59bfb36f42 rdf:first sg:person.01024061721.40
    58 rdf:rest rdf:nil
    59 N3b142d8af313426cb542d6e03b18e0d1 schema:name readcube_id
    60 schema:value 05129dac5af529f86e8c9d105eedfeb6cd51b7bd48115f0f0ca1a7810f3d0e54
    61 rdf:type schema:PropertyValue
    62 N3ccb2c52f0ee4d57a5c2ad0f42e9b913 rdf:first sg:person.01032646746.00
    63 rdf:rest N30bd766d8b2f44c0bb54f25d5bd990a8
    64 N485f7f61429a494d9c3b9acb86d61d8a schema:issueNumber 3
    65 rdf:type schema:PublicationIssue
    66 N65372aeed8c3457ab94664a6d529e962 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    67 schema:name Computer Communication Networks
    68 rdf:type schema:DefinedTerm
    69 N6a612432b49348a6a50fda07e8cc1068 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    70 schema:name Computer Simulation
    71 rdf:type schema:DefinedTerm
    72 N6d743b9676f345678b8b3bba99b3db9a schema:name dimensions_id
    73 schema:value pub.1001064870
    74 rdf:type schema:PropertyValue
    75 N6ecb36dabc9e493d8cf4a86672406745 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    76 schema:name Models, Theoretical
    77 rdf:type schema:DefinedTerm
    78 Nc1a1e4699d914c4f9b10f8f613abff43 schema:name nlm_unique_id
    79 schema:value 8405140
    80 rdf:type schema:PropertyValue
    81 Ncbe4f6375cd24657a400a936a72bf5cc schema:name pubmed_id
    82 schema:value 3798393
    83 rdf:type schema:PropertyValue
    84 Nf7010d4d4384494cbcc6eaa61dc3f362 schema:name Springer Nature - SN SciGraph project
    85 rdf:type schema:Organization
    86 Nfd61444dcdd846e49bb85224a1726010 schema:name doi
    87 schema:value 10.1007/bf00539848
    88 rdf:type schema:PropertyValue
    89 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    90 schema:name Information and Computing Sciences
    91 rdf:type schema:DefinedTerm
    92 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    93 schema:name Artificial Intelligence and Image Processing
    94 rdf:type schema:DefinedTerm
    95 sg:journal.1091515 schema:issn 1386-7415
    96 1573-0980
    97 schema:name Theoretical Medicine and Bioethics
    98 rdf:type schema:Periodical
    99 sg:person.01024061721.40 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
    100 schema:familyName Miller
    101 schema:givenName Robert E.
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024061721.40
    103 rdf:type schema:Person
    104 sg:person.01032646746.00 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
    105 schema:familyName Moore
    106 schema:givenName G. William
    107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032646746.00
    108 rdf:type schema:Person
    109 sg:person.0743327605.00 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
    110 schema:familyName Hutchins
    111 schema:givenName Grover M.
    112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743327605.00
    113 rdf:type schema:Person
    114 sg:pub.10.1007/bf00489476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009733289
    115 https://doi.org/10.1007/bf00489476
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1038/scientificamerican0583-116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056542148
    118 https://doi.org/10.1038/scientificamerican0583-116
    119 rdf:type schema:CreativeWork
    120 https://app.dimensions.ai/details/publication/pub.1074409613 schema:CreativeWork
    121 https://app.dimensions.ai/details/publication/pub.1079984248 schema:CreativeWork
    122 https://app.dimensions.ai/details/publication/pub.1081755083 schema:CreativeWork
    123 https://app.dimensions.ai/details/publication/pub.1081811571 schema:CreativeWork
    124 https://doi.org/10.1016/0002-9343(81)90759-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037625485
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1016/0002-9343(86)90007-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015240840
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1016/0010-4809(83)90025-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008558902
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1016/0025-5564(82)90086-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009054966
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1056/nejm197808172990704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030767456
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1056/nejm198212233072604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047183208
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1056/nejm198405243102106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046521661
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1056/nejm198405243102111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008259187
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1056/nejm198405243102141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019601182
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1056/nejm198406213102506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044393800
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1056/nejm198511143132005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035590854
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1093/jnci/22.4.719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075910802
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1136/bmj.2.4849.1284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005441508
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1137/1021092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062861414
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.2307/3002000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078266745
    153 rdf:type schema:CreativeWork
    154 https://www.grid.ac/institutes/grid.21107.35 schema:alternateName Johns Hopkins University
    155 schema:name Department of Pathology, The Johns Hopkins Medical Institutions, 21205, Baltimore, Maryland, USA
    156 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...