A new paradigm for hypothesis testing in medicine, with examination of the Neyman Pearson condition View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1986-10

AUTHORS

G. William Moore, Grover M. Hutchins, Robert E. Miller

ABSTRACT

In the past, hypothesis testing in medicine has employed the paradigm of the repeatable experiment. In statistical hypothesis testing, an unbiased sample is drawn from a larger source population, and a calculated statistic is compared to a preassigned critical region, on the assumption that the comparison could be repeated an indefinite number of times. However, repeated experiments often cannot be performed on human beings, due to ethical or economic constraints. We describe a new paradigm for hypothesis testing which uses only rearrangements of data present within the observed data set. The token swap test, based on this new paradigm, is applied to three data sets from cardiovascular pathology, and computational experiments suggest that the token swap test satisfies the Neyman Pearson condition. More... »

PAGES

269-282

References to SciGraph publications

  • 1984-10. Compensatory neoplasia: Chronic erythrocytosis and neuroblastic tumors in THEORETICAL MEDICINE AND BIOETHICS
  • 1983-05. Computer-Intensive Methods in Statistics in SCIENTIFIC AMERICAN
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf00539848

    DOI

    http://dx.doi.org/10.1007/bf00539848

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1001064870

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/3798393


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computer Communication Networks", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computer Simulation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Theoretical", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Johns Hopkins University", 
              "id": "https://www.grid.ac/institutes/grid.21107.35", 
              "name": [
                "Department of Pathology, The Johns Hopkins Medical Institutions, 21205, Baltimore, Maryland, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Moore", 
            "givenName": "G. William", 
            "id": "sg:person.01032646746.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032646746.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Johns Hopkins University", 
              "id": "https://www.grid.ac/institutes/grid.21107.35", 
              "name": [
                "Department of Pathology, The Johns Hopkins Medical Institutions, 21205, Baltimore, Maryland, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hutchins", 
            "givenName": "Grover M.", 
            "id": "sg:person.0743327605.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743327605.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Johns Hopkins University", 
              "id": "https://www.grid.ac/institutes/grid.21107.35", 
              "name": [
                "Department of Pathology, The Johns Hopkins Medical Institutions, 21205, Baltimore, Maryland, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Miller", 
            "givenName": "Robert E.", 
            "id": "sg:person.01024061721.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024061721.40"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1136/bmj.2.4849.1284", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005441508"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1056/nejm198405243102111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008259187"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0010-4809(83)90025-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008558902"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0010-4809(83)90025-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008558902"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0025-5564(82)90086-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009054966"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00489476", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009733289", 
              "https://doi.org/10.1007/bf00489476"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00489476", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009733289", 
              "https://doi.org/10.1007/bf00489476"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0002-9343(86)90007-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015240840"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1056/nejm198405243102141", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019601182"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1056/nejm197808172990704", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030767456"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1056/nejm198511143132005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035590854"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0002-9343(81)90759-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037625485"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1056/nejm198406213102506", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044393800"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1056/nejm198405243102106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046521661"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1056/nejm198212233072604", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047183208"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/scientificamerican0583-116", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056542148", 
              "https://doi.org/10.1038/scientificamerican0583-116"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/1021092", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062861414"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1074409613", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/jnci/22.4.719", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1075910802"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/3002000", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1078266745"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1079984248", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1081755083", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1081811571", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1986-10", 
        "datePublishedReg": "1986-10-01", 
        "description": "In the past, hypothesis testing in medicine has employed the paradigm of the repeatable experiment. In statistical hypothesis testing, an unbiased sample is drawn from a larger source population, and a calculated statistic is compared to a preassigned critical region, on the assumption that the comparison could be repeated an indefinite number of times. However, repeated experiments often cannot be performed on human beings, due to ethical or economic constraints. We describe a new paradigm for hypothesis testing which uses only rearrangements of data present within the observed data set. The token swap test, based on this new paradigm, is applied to three data sets from cardiovascular pathology, and computational experiments suggest that the token swap test satisfies the Neyman Pearson condition.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf00539848", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1091515", 
            "issn": [
              "1386-7415", 
              "1573-0980"
            ], 
            "name": "Theoretical Medicine and Bioethics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "7"
          }
        ], 
        "name": "A new paradigm for hypothesis testing in medicine, with examination of the Neyman Pearson condition", 
        "pagination": "269-282", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf00539848"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "05129dac5af529f86e8c9d105eedfeb6cd51b7bd48115f0f0ca1a7810f3d0e54"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1001064870"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "8405140"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "3798393"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf00539848", 
          "https://app.dimensions.ai/details/publication/pub.1001064870"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-15T08:59", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000375_0000000375/records_91432_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF00539848"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00539848'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00539848'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00539848'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00539848'


     

    This table displays all metadata directly associated to this object as RDF triples.

    156 TRIPLES      21 PREDICATES      53 URIs      24 LITERALS      12 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf00539848 schema:about N3b856754af1c4f6088c11687c6918fe4
    2 N47c89fe462dc4197955b379643564562
    3 N80a32158be494bc6bb6d7ab209affa71
    4 anzsrc-for:08
    5 anzsrc-for:0801
    6 schema:author Ncf45e2e19cff4f0e96258c51b6bd5b3c
    7 schema:citation sg:pub.10.1007/bf00489476
    8 sg:pub.10.1038/scientificamerican0583-116
    9 https://app.dimensions.ai/details/publication/pub.1074409613
    10 https://app.dimensions.ai/details/publication/pub.1079984248
    11 https://app.dimensions.ai/details/publication/pub.1081755083
    12 https://app.dimensions.ai/details/publication/pub.1081811571
    13 https://doi.org/10.1016/0002-9343(81)90759-2
    14 https://doi.org/10.1016/0002-9343(86)90007-0
    15 https://doi.org/10.1016/0010-4809(83)90025-3
    16 https://doi.org/10.1016/0025-5564(82)90086-4
    17 https://doi.org/10.1056/nejm197808172990704
    18 https://doi.org/10.1056/nejm198212233072604
    19 https://doi.org/10.1056/nejm198405243102106
    20 https://doi.org/10.1056/nejm198405243102111
    21 https://doi.org/10.1056/nejm198405243102141
    22 https://doi.org/10.1056/nejm198406213102506
    23 https://doi.org/10.1056/nejm198511143132005
    24 https://doi.org/10.1093/jnci/22.4.719
    25 https://doi.org/10.1136/bmj.2.4849.1284
    26 https://doi.org/10.1137/1021092
    27 https://doi.org/10.2307/3002000
    28 schema:datePublished 1986-10
    29 schema:datePublishedReg 1986-10-01
    30 schema:description In the past, hypothesis testing in medicine has employed the paradigm of the repeatable experiment. In statistical hypothesis testing, an unbiased sample is drawn from a larger source population, and a calculated statistic is compared to a preassigned critical region, on the assumption that the comparison could be repeated an indefinite number of times. However, repeated experiments often cannot be performed on human beings, due to ethical or economic constraints. We describe a new paradigm for hypothesis testing which uses only rearrangements of data present within the observed data set. The token swap test, based on this new paradigm, is applied to three data sets from cardiovascular pathology, and computational experiments suggest that the token swap test satisfies the Neyman Pearson condition.
    31 schema:genre research_article
    32 schema:inLanguage en
    33 schema:isAccessibleForFree false
    34 schema:isPartOf N92f05e3cc4e04eba9cf983da41631b66
    35 Ne116a43bde0745a981c69a1900752437
    36 sg:journal.1091515
    37 schema:name A new paradigm for hypothesis testing in medicine, with examination of the Neyman Pearson condition
    38 schema:pagination 269-282
    39 schema:productId N2a5adb0458f94d7b99e2ca8d564e93a3
    40 N5ed3834b55594cf5b1df4c8d8d50b4d8
    41 N73c6d019f70647269c38b40494517c92
    42 Nbf8dce1d4b454a69a6e6c426f32673c0
    43 Ned8f905db9d64b5eb7e46abfc5c5fb90
    44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001064870
    45 https://doi.org/10.1007/bf00539848
    46 schema:sdDatePublished 2019-04-15T08:59
    47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    48 schema:sdPublisher N3adc32ba01a948a693e3dacf04409bd9
    49 schema:url http://link.springer.com/10.1007/BF00539848
    50 sgo:license sg:explorer/license/
    51 sgo:sdDataset articles
    52 rdf:type schema:ScholarlyArticle
    53 N2a5adb0458f94d7b99e2ca8d564e93a3 schema:name readcube_id
    54 schema:value 05129dac5af529f86e8c9d105eedfeb6cd51b7bd48115f0f0ca1a7810f3d0e54
    55 rdf:type schema:PropertyValue
    56 N36aea04c9b2e4fafa382f6356f8b5633 rdf:first sg:person.01024061721.40
    57 rdf:rest rdf:nil
    58 N3adc32ba01a948a693e3dacf04409bd9 schema:name Springer Nature - SN SciGraph project
    59 rdf:type schema:Organization
    60 N3b856754af1c4f6088c11687c6918fe4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    61 schema:name Computer Communication Networks
    62 rdf:type schema:DefinedTerm
    63 N47c89fe462dc4197955b379643564562 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    64 schema:name Models, Theoretical
    65 rdf:type schema:DefinedTerm
    66 N5ed3834b55594cf5b1df4c8d8d50b4d8 schema:name dimensions_id
    67 schema:value pub.1001064870
    68 rdf:type schema:PropertyValue
    69 N73c6d019f70647269c38b40494517c92 schema:name doi
    70 schema:value 10.1007/bf00539848
    71 rdf:type schema:PropertyValue
    72 N80a32158be494bc6bb6d7ab209affa71 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    73 schema:name Computer Simulation
    74 rdf:type schema:DefinedTerm
    75 N92f05e3cc4e04eba9cf983da41631b66 schema:volumeNumber 7
    76 rdf:type schema:PublicationVolume
    77 Nb7d8bd54f29c4fb585b47a5adaa04a38 rdf:first sg:person.0743327605.00
    78 rdf:rest N36aea04c9b2e4fafa382f6356f8b5633
    79 Nbf8dce1d4b454a69a6e6c426f32673c0 schema:name nlm_unique_id
    80 schema:value 8405140
    81 rdf:type schema:PropertyValue
    82 Ncf45e2e19cff4f0e96258c51b6bd5b3c rdf:first sg:person.01032646746.00
    83 rdf:rest Nb7d8bd54f29c4fb585b47a5adaa04a38
    84 Ne116a43bde0745a981c69a1900752437 schema:issueNumber 3
    85 rdf:type schema:PublicationIssue
    86 Ned8f905db9d64b5eb7e46abfc5c5fb90 schema:name pubmed_id
    87 schema:value 3798393
    88 rdf:type schema:PropertyValue
    89 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    90 schema:name Information and Computing Sciences
    91 rdf:type schema:DefinedTerm
    92 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    93 schema:name Artificial Intelligence and Image Processing
    94 rdf:type schema:DefinedTerm
    95 sg:journal.1091515 schema:issn 1386-7415
    96 1573-0980
    97 schema:name Theoretical Medicine and Bioethics
    98 rdf:type schema:Periodical
    99 sg:person.01024061721.40 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
    100 schema:familyName Miller
    101 schema:givenName Robert E.
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024061721.40
    103 rdf:type schema:Person
    104 sg:person.01032646746.00 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
    105 schema:familyName Moore
    106 schema:givenName G. William
    107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032646746.00
    108 rdf:type schema:Person
    109 sg:person.0743327605.00 schema:affiliation https://www.grid.ac/institutes/grid.21107.35
    110 schema:familyName Hutchins
    111 schema:givenName Grover M.
    112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743327605.00
    113 rdf:type schema:Person
    114 sg:pub.10.1007/bf00489476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009733289
    115 https://doi.org/10.1007/bf00489476
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1038/scientificamerican0583-116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056542148
    118 https://doi.org/10.1038/scientificamerican0583-116
    119 rdf:type schema:CreativeWork
    120 https://app.dimensions.ai/details/publication/pub.1074409613 schema:CreativeWork
    121 https://app.dimensions.ai/details/publication/pub.1079984248 schema:CreativeWork
    122 https://app.dimensions.ai/details/publication/pub.1081755083 schema:CreativeWork
    123 https://app.dimensions.ai/details/publication/pub.1081811571 schema:CreativeWork
    124 https://doi.org/10.1016/0002-9343(81)90759-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037625485
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1016/0002-9343(86)90007-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015240840
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1016/0010-4809(83)90025-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008558902
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1016/0025-5564(82)90086-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009054966
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1056/nejm197808172990704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030767456
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1056/nejm198212233072604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047183208
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1056/nejm198405243102106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046521661
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1056/nejm198405243102111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008259187
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1056/nejm198405243102141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019601182
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1056/nejm198406213102506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044393800
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1056/nejm198511143132005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035590854
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1093/jnci/22.4.719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075910802
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1136/bmj.2.4849.1284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005441508
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1137/1021092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062861414
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.2307/3002000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078266745
    153 rdf:type schema:CreativeWork
    154 https://www.grid.ac/institutes/grid.21107.35 schema:alternateName Johns Hopkins University
    155 schema:name Department of Pathology, The Johns Hopkins Medical Institutions, 21205, Baltimore, Maryland, USA
    156 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...