Canonical gibbs states, their relation to gibbs states, and applications to two-valued Markov chains View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1975-12

AUTHORS

Hans-Otto Georgii

ABSTRACT

N/A

PAGES

277-300

Journal

TITLE

Probability Theory and Related Fields

ISSUE

4

VOLUME

32

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00535841

DOI

http://dx.doi.org/10.1007/bf00535841

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037100732


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "name": [
            "Institut f\u00fcr Angewandte Mathematik der Universit\u00c4t, Im Neuenheimer Feld 5, D-6900, Heidelberg, Federal Republic of Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Georgii", 
        "givenName": "Hans-Otto", 
        "id": "sg:person.07641340776.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07641340776.35"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1090/s0002-9947-1955-0076206-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000958791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01646474", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003983312", 
          "https://doi.org/10.1007/bf01646474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01646474", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003983312", 
          "https://doi.org/10.1007/bf01646474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01661149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010559537", 
          "https://doi.org/10.1007/bf01661149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01661149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010559537", 
          "https://doi.org/10.1007/bf01661149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00679137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011876319", 
          "https://doi.org/10.1007/bf00679137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00679137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011876319", 
          "https://doi.org/10.1007/bf00679137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00679137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011876319", 
          "https://doi.org/10.1007/bf00679137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1974-0375531-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019764314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01645650", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022800944", 
          "https://doi.org/10.1007/bf01645650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01645650", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022800944", 
          "https://doi.org/10.1007/bf01645650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-8708(70)90034-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028048523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01075681", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033150039", 
          "https://doi.org/10.1007/bf01075681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01075681", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033150039", 
          "https://doi.org/10.1007/bf01075681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00532723", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034166042", 
          "https://doi.org/10.1007/bf00532723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00532723", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034166042", 
          "https://doi.org/10.1007/bf00532723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01645487", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042070711", 
          "https://doi.org/10.1007/bf01645487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01645487", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042070711", 
          "https://doi.org/10.1007/bf01645487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-8708(70)90035-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042190463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01075682", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044659002", 
          "https://doi.org/10.1007/bf01075682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01075682", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044659002", 
          "https://doi.org/10.1007/bf01075682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01877751", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047445040", 
          "https://doi.org/10.1007/bf01877751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01877751", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047445040", 
          "https://doi.org/10.1007/bf01877751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1113026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062866131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511897122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098679221"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1975-12", 
    "datePublishedReg": "1975-12-01", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf00535841", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1053886", 
        "issn": [
          "0178-8051", 
          "1432-2064"
        ], 
        "name": "Probability Theory and Related Fields", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "32"
      }
    ], 
    "name": "Canonical gibbs states, their relation to gibbs states, and applications to two-valued Markov chains", 
    "pagination": "277-300", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00535841"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b0bc13a7f9dfe8f2d449bcaf329863a607855b2b1ff0020b468bb8360d4c3b6a"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037100732"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00535841", 
      "https://app.dimensions.ai/details/publication/pub.1037100732"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T09:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000375_0000000375/records_91466_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF00535841"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00535841'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00535841'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00535841'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00535841'


 

This table displays all metadata directly associated to this object as RDF triples.

105 TRIPLES      19 PREDICATES      39 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00535841 schema:author N536c779ad64a4aa683e07efa168af39e
2 schema:citation sg:pub.10.1007/bf00532723
3 sg:pub.10.1007/bf00679137
4 sg:pub.10.1007/bf01075681
5 sg:pub.10.1007/bf01075682
6 sg:pub.10.1007/bf01645487
7 sg:pub.10.1007/bf01645650
8 sg:pub.10.1007/bf01646474
9 sg:pub.10.1007/bf01661149
10 sg:pub.10.1007/bf01877751
11 https://doi.org/10.1016/0001-8708(70)90034-4
12 https://doi.org/10.1016/0001-8708(70)90035-6
13 https://doi.org/10.1017/cbo9780511897122
14 https://doi.org/10.1090/s0002-9947-1955-0076206-8
15 https://doi.org/10.1090/s0002-9947-1974-0375531-2
16 https://doi.org/10.1137/1113026
17 schema:datePublished 1975-12
18 schema:datePublishedReg 1975-12-01
19 schema:genre research_article
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N26d4bf8c36b94766b6f05ff24a4739d9
23 Nf1bb40925b744e02869e72f91b344a34
24 sg:journal.1053886
25 schema:name Canonical gibbs states, their relation to gibbs states, and applications to two-valued Markov chains
26 schema:pagination 277-300
27 schema:productId N30d80f0d0783490cbb841d5599fbc0ba
28 N3d6cbd0cf5d846778dd1e8ae2568f89e
29 Nf9d4ce1c9abe4d02815778f8a05639bb
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037100732
31 https://doi.org/10.1007/bf00535841
32 schema:sdDatePublished 2019-04-15T09:04
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N49314aafe79b4af3be74552c270e9d34
35 schema:url http://link.springer.com/10.1007/BF00535841
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N26d4bf8c36b94766b6f05ff24a4739d9 schema:issueNumber 4
40 rdf:type schema:PublicationIssue
41 N30d80f0d0783490cbb841d5599fbc0ba schema:name dimensions_id
42 schema:value pub.1037100732
43 rdf:type schema:PropertyValue
44 N3d6cbd0cf5d846778dd1e8ae2568f89e schema:name readcube_id
45 schema:value b0bc13a7f9dfe8f2d449bcaf329863a607855b2b1ff0020b468bb8360d4c3b6a
46 rdf:type schema:PropertyValue
47 N49314aafe79b4af3be74552c270e9d34 schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 N536c779ad64a4aa683e07efa168af39e rdf:first sg:person.07641340776.35
50 rdf:rest rdf:nil
51 Ne373bc3619ab451793445be0d8694bfc schema:name Institut für Angewandte Mathematik der UniversitÄt, Im Neuenheimer Feld 5, D-6900, Heidelberg, Federal Republic of Germany
52 rdf:type schema:Organization
53 Nf1bb40925b744e02869e72f91b344a34 schema:volumeNumber 32
54 rdf:type schema:PublicationVolume
55 Nf9d4ce1c9abe4d02815778f8a05639bb schema:name doi
56 schema:value 10.1007/bf00535841
57 rdf:type schema:PropertyValue
58 sg:journal.1053886 schema:issn 0178-8051
59 1432-2064
60 schema:name Probability Theory and Related Fields
61 rdf:type schema:Periodical
62 sg:person.07641340776.35 schema:affiliation Ne373bc3619ab451793445be0d8694bfc
63 schema:familyName Georgii
64 schema:givenName Hans-Otto
65 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07641340776.35
66 rdf:type schema:Person
67 sg:pub.10.1007/bf00532723 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034166042
68 https://doi.org/10.1007/bf00532723
69 rdf:type schema:CreativeWork
70 sg:pub.10.1007/bf00679137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011876319
71 https://doi.org/10.1007/bf00679137
72 rdf:type schema:CreativeWork
73 sg:pub.10.1007/bf01075681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033150039
74 https://doi.org/10.1007/bf01075681
75 rdf:type schema:CreativeWork
76 sg:pub.10.1007/bf01075682 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044659002
77 https://doi.org/10.1007/bf01075682
78 rdf:type schema:CreativeWork
79 sg:pub.10.1007/bf01645487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042070711
80 https://doi.org/10.1007/bf01645487
81 rdf:type schema:CreativeWork
82 sg:pub.10.1007/bf01645650 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022800944
83 https://doi.org/10.1007/bf01645650
84 rdf:type schema:CreativeWork
85 sg:pub.10.1007/bf01646474 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003983312
86 https://doi.org/10.1007/bf01646474
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/bf01661149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010559537
89 https://doi.org/10.1007/bf01661149
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/bf01877751 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047445040
92 https://doi.org/10.1007/bf01877751
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/0001-8708(70)90034-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028048523
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/0001-8708(70)90035-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042190463
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1017/cbo9780511897122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098679221
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1090/s0002-9947-1955-0076206-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000958791
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1090/s0002-9947-1974-0375531-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019764314
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1137/1113026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062866131
105 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...