Ontology type: schema:ScholarlyArticle
1986-01
AUTHORSV. V. Lobanov, N. A. Vysotskaya, E. A. Rabovskaya, V. I. Bogillo
ABSTRACTMINDO/3 calculations have been made on the potential-energy surfaces for the attachment of OH. radicals to benzene (1) and naphthalene (2) in the vapor state. The activation energies of these reactions are calculated as 88 and 58 kJ/mole. while the enthalpies at 298K are calculated as −211 and −199 kJ/mol. The transition states in (1) and (2) lie closer to the reagents than the products on the reaction coordinate, while (1) has an earlier transition state than does (2). The transition states in these reactions have high dipole moments: 3.1 and 3.6 D, respectively, which are due to charge transfer from the hydrocarbons to the OH.. Quantum-chemical calculations and kinetic data on the reactions of aromatic hydrocarbons with OH. in aqueous solution indicate that the mechanism is probably not one involving electron transfer and a rate-limiting stage in the attachment. These processes are of high performance because the radicals are of high stability, while polar effects determine the selectivity. More... »
PAGES17-22
http://scigraph.springernature.com/pub.10.1007/bf00525299
DOIhttp://dx.doi.org/10.1007/bf00525299
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1034585365
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Chemical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Chemistry (incl. Structural)",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Pisarzhevskii Institute of Physical Chemistry, Academy of Sciences of the Ukrainian SSR, Kiev",
"id": "http://www.grid.ac/institutes/grid.418751.e",
"name": [
"Pisarzhevskii Institute of Physical Chemistry, Academy of Sciences of the Ukrainian SSR, Kiev"
],
"type": "Organization"
},
"familyName": "Lobanov",
"givenName": "V. V.",
"id": "sg:person.016020327543.29",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016020327543.29"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Pisarzhevskii Institute of Physical Chemistry, Academy of Sciences of the Ukrainian SSR, Kiev",
"id": "http://www.grid.ac/institutes/grid.418751.e",
"name": [
"Pisarzhevskii Institute of Physical Chemistry, Academy of Sciences of the Ukrainian SSR, Kiev"
],
"type": "Organization"
},
"familyName": "Vysotskaya",
"givenName": "N. A.",
"id": "sg:person.012610120472.43",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012610120472.43"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Pisarzhevskii Institute of Physical Chemistry, Academy of Sciences of the Ukrainian SSR, Kiev",
"id": "http://www.grid.ac/institutes/grid.418751.e",
"name": [
"Pisarzhevskii Institute of Physical Chemistry, Academy of Sciences of the Ukrainian SSR, Kiev"
],
"type": "Organization"
},
"familyName": "Rabovskaya",
"givenName": "E. A.",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Pisarzhevskii Institute of Physical Chemistry, Academy of Sciences of the Ukrainian SSR, Kiev",
"id": "http://www.grid.ac/institutes/grid.418751.e",
"name": [
"Pisarzhevskii Institute of Physical Chemistry, Academy of Sciences of the Ukrainian SSR, Kiev"
],
"type": "Organization"
},
"familyName": "Bogillo",
"givenName": "V. I.",
"id": "sg:person.012203066061.62",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012203066061.62"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf00748367",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019778787",
"https://doi.org/10.1007/bf00748367"
],
"type": "CreativeWork"
}
],
"datePublished": "1986-01",
"datePublishedReg": "1986-01-01",
"description": "MINDO/3 calculations have been made on the potential-energy surfaces for the attachment of OH. radicals to benzene (1) and naphthalene (2) in the vapor state. The activation energies of these reactions are calculated as 88 and 58 kJ/mole. while the enthalpies at 298K are calculated as \u2212211 and \u2212199 kJ/mol. The transition states in (1) and (2) lie closer to the reagents than the products on the reaction coordinate, while (1) has an earlier transition state than does (2). The transition states in these reactions have high dipole moments: 3.1 and 3.6 D, respectively, which are due to charge transfer from the hydrocarbons to the OH.. Quantum-chemical calculations and kinetic data on the reactions of aromatic hydrocarbons with OH. in aqueous solution indicate that the mechanism is probably not one involving electron transfer and a rate-limiting stage in the attachment. These processes are of high performance because the radicals are of high stability, while polar effects determine the selectivity.",
"genre": "article",
"id": "sg:pub.10.1007/bf00525299",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1010993",
"issn": [
"0040-5760",
"1573-935X"
],
"name": "Theoretical and Experimental Chemistry",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "22"
}
],
"keywords": [
"quantum chemical calculations",
"high dipole moment",
"potential energy surface",
"early transition state",
"kJ/",
"aromatic hydrocarbons",
"radical hydroxylation",
"electron transfer",
"aqueous solution",
"transition state",
"high stability",
"rate-limiting stage",
"MINDO/3 method",
"MINDO/3 calculations",
"dipole moment",
"OH",
"kinetic data",
"polar effects",
"vapor state",
"reaction",
"activation energy",
"radicals",
"hydrocarbons",
"selectivity",
"reagents",
"calculations",
"naphthalene",
"transfer",
"enthalpy",
"high performance",
"hydroxylation",
"attachment",
"stability",
"surface",
"products",
"solution",
"transition",
"energy",
"state",
"mechanism",
"process",
"method",
"performance",
"effect",
"moment",
"data",
"stage"
],
"name": "Radical hydroxylation of aromatic hydrocarbons examined by MINDO/3 methods",
"pagination": "17-22",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1034585365"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/bf00525299"
]
}
],
"sameAs": [
"https://doi.org/10.1007/bf00525299",
"https://app.dimensions.ai/details/publication/pub.1034585365"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T16:50",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_200.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/bf00525299"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00525299'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00525299'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00525299'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00525299'
This table displays all metadata directly associated to this object as RDF triples.
136 TRIPLES
21 PREDICATES
75 URIs
64 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/bf00525299 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0202 |
3 | ″ | ″ | anzsrc-for:03 |
4 | ″ | ″ | anzsrc-for:0306 |
5 | ″ | schema:author | Nd99efe87a9fb4d14a498ce86342bd815 |
6 | ″ | schema:citation | sg:pub.10.1007/bf00748367 |
7 | ″ | schema:datePublished | 1986-01 |
8 | ″ | schema:datePublishedReg | 1986-01-01 |
9 | ″ | schema:description | MINDO/3 calculations have been made on the potential-energy surfaces for the attachment of OH. radicals to benzene (1) and naphthalene (2) in the vapor state. The activation energies of these reactions are calculated as 88 and 58 kJ/mole. while the enthalpies at 298K are calculated as −211 and −199 kJ/mol. The transition states in (1) and (2) lie closer to the reagents than the products on the reaction coordinate, while (1) has an earlier transition state than does (2). The transition states in these reactions have high dipole moments: 3.1 and 3.6 D, respectively, which are due to charge transfer from the hydrocarbons to the OH.. Quantum-chemical calculations and kinetic data on the reactions of aromatic hydrocarbons with OH. in aqueous solution indicate that the mechanism is probably not one involving electron transfer and a rate-limiting stage in the attachment. These processes are of high performance because the radicals are of high stability, while polar effects determine the selectivity. |
10 | ″ | schema:genre | article |
11 | ″ | schema:isAccessibleForFree | false |
12 | ″ | schema:isPartOf | N941e4f8ad756477a87397fb149baa4e3 |
13 | ″ | ″ | Nfee00baf6fbf46eb8b34bec0472c5e19 |
14 | ″ | ″ | sg:journal.1010993 |
15 | ″ | schema:keywords | MINDO/3 calculations |
16 | ″ | ″ | MINDO/3 method |
17 | ″ | ″ | OH |
18 | ″ | ″ | activation energy |
19 | ″ | ″ | aqueous solution |
20 | ″ | ″ | aromatic hydrocarbons |
21 | ″ | ″ | attachment |
22 | ″ | ″ | calculations |
23 | ″ | ″ | data |
24 | ″ | ″ | dipole moment |
25 | ″ | ″ | early transition state |
26 | ″ | ″ | effect |
27 | ″ | ″ | electron transfer |
28 | ″ | ″ | energy |
29 | ″ | ″ | enthalpy |
30 | ″ | ″ | high dipole moment |
31 | ″ | ″ | high performance |
32 | ″ | ″ | high stability |
33 | ″ | ″ | hydrocarbons |
34 | ″ | ″ | hydroxylation |
35 | ″ | ″ | kJ/ |
36 | ″ | ″ | kinetic data |
37 | ″ | ″ | mechanism |
38 | ″ | ″ | method |
39 | ″ | ″ | moment |
40 | ″ | ″ | naphthalene |
41 | ″ | ″ | performance |
42 | ″ | ″ | polar effects |
43 | ″ | ″ | potential energy surface |
44 | ″ | ″ | process |
45 | ″ | ″ | products |
46 | ″ | ″ | quantum chemical calculations |
47 | ″ | ″ | radical hydroxylation |
48 | ″ | ″ | radicals |
49 | ″ | ″ | rate-limiting stage |
50 | ″ | ″ | reaction |
51 | ″ | ″ | reagents |
52 | ″ | ″ | selectivity |
53 | ″ | ″ | solution |
54 | ″ | ″ | stability |
55 | ″ | ″ | stage |
56 | ″ | ″ | state |
57 | ″ | ″ | surface |
58 | ″ | ″ | transfer |
59 | ″ | ″ | transition |
60 | ″ | ″ | transition state |
61 | ″ | ″ | vapor state |
62 | ″ | schema:name | Radical hydroxylation of aromatic hydrocarbons examined by MINDO/3 methods |
63 | ″ | schema:pagination | 17-22 |
64 | ″ | schema:productId | N044bb96d170342a59763dbec49079a30 |
65 | ″ | ″ | N830a2f1a866f42089e36b89b5ad9374a |
66 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1034585365 |
67 | ″ | ″ | https://doi.org/10.1007/bf00525299 |
68 | ″ | schema:sdDatePublished | 2022-08-04T16:50 |
69 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
70 | ″ | schema:sdPublisher | N2cf37fcbd30647078c71b84ffc3fa191 |
71 | ″ | schema:url | https://doi.org/10.1007/bf00525299 |
72 | ″ | sgo:license | sg:explorer/license/ |
73 | ″ | sgo:sdDataset | articles |
74 | ″ | rdf:type | schema:ScholarlyArticle |
75 | N044bb96d170342a59763dbec49079a30 | schema:name | dimensions_id |
76 | ″ | schema:value | pub.1034585365 |
77 | ″ | rdf:type | schema:PropertyValue |
78 | N06ec790e41b0459a9c67c9536b713b21 | rdf:first | sg:person.012203066061.62 |
79 | ″ | rdf:rest | rdf:nil |
80 | N2cf37fcbd30647078c71b84ffc3fa191 | schema:name | Springer Nature - SN SciGraph project |
81 | ″ | rdf:type | schema:Organization |
82 | N7477adf1cbf34b05806d9994721060cf | rdf:first | Ndb8f37b990b7496c954bbb3485609405 |
83 | ″ | rdf:rest | N06ec790e41b0459a9c67c9536b713b21 |
84 | N830a2f1a866f42089e36b89b5ad9374a | schema:name | doi |
85 | ″ | schema:value | 10.1007/bf00525299 |
86 | ″ | rdf:type | schema:PropertyValue |
87 | N941e4f8ad756477a87397fb149baa4e3 | schema:issueNumber | 1 |
88 | ″ | rdf:type | schema:PublicationIssue |
89 | Nacc2faa9025a4c7ab6c59f41baaa9590 | rdf:first | sg:person.012610120472.43 |
90 | ″ | rdf:rest | N7477adf1cbf34b05806d9994721060cf |
91 | Nd99efe87a9fb4d14a498ce86342bd815 | rdf:first | sg:person.016020327543.29 |
92 | ″ | rdf:rest | Nacc2faa9025a4c7ab6c59f41baaa9590 |
93 | Ndb8f37b990b7496c954bbb3485609405 | schema:affiliation | grid-institutes:grid.418751.e |
94 | ″ | schema:familyName | Rabovskaya |
95 | ″ | schema:givenName | E. A. |
96 | ″ | rdf:type | schema:Person |
97 | Nfee00baf6fbf46eb8b34bec0472c5e19 | schema:volumeNumber | 22 |
98 | ″ | rdf:type | schema:PublicationVolume |
99 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
100 | ″ | schema:name | Physical Sciences |
101 | ″ | rdf:type | schema:DefinedTerm |
102 | anzsrc-for:0202 | schema:inDefinedTermSet | anzsrc-for: |
103 | ″ | schema:name | Atomic, Molecular, Nuclear, Particle and Plasma Physics |
104 | ″ | rdf:type | schema:DefinedTerm |
105 | anzsrc-for:03 | schema:inDefinedTermSet | anzsrc-for: |
106 | ″ | schema:name | Chemical Sciences |
107 | ″ | rdf:type | schema:DefinedTerm |
108 | anzsrc-for:0306 | schema:inDefinedTermSet | anzsrc-for: |
109 | ″ | schema:name | Physical Chemistry (incl. Structural) |
110 | ″ | rdf:type | schema:DefinedTerm |
111 | sg:journal.1010993 | schema:issn | 0040-5760 |
112 | ″ | ″ | 1573-935X |
113 | ″ | schema:name | Theoretical and Experimental Chemistry |
114 | ″ | schema:publisher | Springer Nature |
115 | ″ | rdf:type | schema:Periodical |
116 | sg:person.012203066061.62 | schema:affiliation | grid-institutes:grid.418751.e |
117 | ″ | schema:familyName | Bogillo |
118 | ″ | schema:givenName | V. I. |
119 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012203066061.62 |
120 | ″ | rdf:type | schema:Person |
121 | sg:person.012610120472.43 | schema:affiliation | grid-institutes:grid.418751.e |
122 | ″ | schema:familyName | Vysotskaya |
123 | ″ | schema:givenName | N. A. |
124 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012610120472.43 |
125 | ″ | rdf:type | schema:Person |
126 | sg:person.016020327543.29 | schema:affiliation | grid-institutes:grid.418751.e |
127 | ″ | schema:familyName | Lobanov |
128 | ″ | schema:givenName | V. V. |
129 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016020327543.29 |
130 | ″ | rdf:type | schema:Person |
131 | sg:pub.10.1007/bf00748367 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1019778787 |
132 | ″ | ″ | https://doi.org/10.1007/bf00748367 |
133 | ″ | rdf:type | schema:CreativeWork |
134 | grid-institutes:grid.418751.e | schema:alternateName | Pisarzhevskii Institute of Physical Chemistry, Academy of Sciences of the Ukrainian SSR, Kiev |
135 | ″ | schema:name | Pisarzhevskii Institute of Physical Chemistry, Academy of Sciences of the Ukrainian SSR, Kiev |
136 | ″ | rdf:type | schema:Organization |