Rapid extraction and analysis of organic compounds from solid samples using coupled supercritical fluid extraction/gas chromatography View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1988-01

AUTHORS

Steven B. Hawthorne, David J. Miller, Mark S. Krieger

ABSTRACT

Direct coupling of supercritical fluid extractions with gas chromatography (SFE-GC) allows the extraction, concentration, and gas chromatographic analysis of organic analytes from solid samples to be performed in less than 1 h. Coupling of the supercritical fluid extraction step with a capillary gas chromatographic column is achieved using a standard on-column injector and requires no modification of the gas chromatograph. Maximum sensitivity is achieved and analyte degradation or loss is minimized since the extracted species are quantitatively transferred into the fusedsilica capillary gas chromatographic column where they are cryogenically focused prior to normal gas chromatographic analysis using flame ionization (SFE-GC/FID) or mass spectral (SFE-GC/MS) detection. SFE-GC analysis yields good chromatographic peak shapes that compare favorably with those obtained using standard on-column injection techniques. Class-selective extractions can be achieved by performing multiple SFE-GC analyses with different extraction pressures. The ability of coupled SFE-GC to yield rapid extraction and analysis of organic analytes is demonstrated for a variety of samples including polycyclic aromatic hydrocarbons (PAHs) from treated wood, urban dust, and river sediment, phenolic species from wood smoke particulates, nicotine from tobacco, biological markers from coal, and flavor components from food products. More... »

PAGES

211-215

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00515607

DOI

http://dx.doi.org/10.1007/bf00515607

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011746026


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0301", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Analytical Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of North Dakota", 
          "id": "https://www.grid.ac/institutes/grid.266862.e", 
          "name": [
            "Energy and Minerals Research Center, University of North Dakota, 58202, Grand Forks, ND, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hawthorne", 
        "givenName": "Steven B.", 
        "id": "sg:person.01360242230.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360242230.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of North Dakota", 
          "id": "https://www.grid.ac/institutes/grid.266862.e", 
          "name": [
            "Energy and Minerals Research Center, University of North Dakota, 58202, Grand Forks, ND, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miller", 
        "givenName": "David J.", 
        "id": "sg:person.01137073466.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137073466.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of North Dakota", 
          "id": "https://www.grid.ac/institutes/grid.266862.e", 
          "name": [
            "Energy and Minerals Research Center, University of North Dakota, 58202, Grand Forks, ND, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krieger", 
        "givenName": "Mark S.", 
        "id": "sg:person.016432550551.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016432550551.99"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0021-9673(00)96341-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007163900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9673(01)83289-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018025246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9673(01)83763-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031959967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0016-2361(85)90015-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034147248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0016-2361(85)90015-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034147248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ange.19780901009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036462669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac00128a008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054974201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac00131a021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054974561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac00134a024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054974859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac00140a026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054975324"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/chromsci/24.6.258", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059464038"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1988-01", 
    "datePublishedReg": "1988-01-01", 
    "description": "Direct coupling of supercritical fluid extractions with gas chromatography (SFE-GC) allows the extraction, concentration, and gas chromatographic analysis of organic analytes from solid samples to be performed in less than 1 h. Coupling of the supercritical fluid extraction step with a capillary gas chromatographic column is achieved using a standard on-column injector and requires no modification of the gas chromatograph. Maximum sensitivity is achieved and analyte degradation or loss is minimized since the extracted species are quantitatively transferred into the fusedsilica capillary gas chromatographic column where they are cryogenically focused prior to normal gas chromatographic analysis using flame ionization (SFE-GC/FID) or mass spectral (SFE-GC/MS) detection. SFE-GC analysis yields good chromatographic peak shapes that compare favorably with those obtained using standard on-column injection techniques. Class-selective extractions can be achieved by performing multiple SFE-GC analyses with different extraction pressures. The ability of coupled SFE-GC to yield rapid extraction and analysis of organic analytes is demonstrated for a variety of samples including polycyclic aromatic hydrocarbons (PAHs) from treated wood, urban dust, and river sediment, phenolic species from wood smoke particulates, nicotine from tobacco, biological markers from coal, and flavor components from food products.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf00515607", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1357342", 
        "issn": [
          "1618-2642", 
          "1618-2650"
        ], 
        "name": "Analytical and Bioanalytical Chemistry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "330"
      }
    ], 
    "name": "Rapid extraction and analysis of organic compounds from solid samples using coupled supercritical fluid extraction/gas chromatography", 
    "pagination": "211-215", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "37f6c644da712f8a1f02d83ba86ceea15a4ce7ce4182b25a68c59163a2261932"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00515607"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011746026"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00515607", 
      "https://app.dimensions.ai/details/publication/pub.1011746026"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130794_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF00515607"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00515607'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00515607'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00515607'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00515607'


 

This table displays all metadata directly associated to this object as RDF triples.

105 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00515607 schema:about anzsrc-for:03
2 anzsrc-for:0301
3 schema:author N503349c1f008441d9519f5c949ed755d
4 schema:citation https://doi.org/10.1002/ange.19780901009
5 https://doi.org/10.1016/0016-2361(85)90015-8
6 https://doi.org/10.1016/s0021-9673(00)96341-6
7 https://doi.org/10.1016/s0021-9673(01)83289-1
8 https://doi.org/10.1016/s0021-9673(01)83763-8
9 https://doi.org/10.1021/ac00128a008
10 https://doi.org/10.1021/ac00131a021
11 https://doi.org/10.1021/ac00134a024
12 https://doi.org/10.1021/ac00140a026
13 https://doi.org/10.1093/chromsci/24.6.258
14 schema:datePublished 1988-01
15 schema:datePublishedReg 1988-01-01
16 schema:description Direct coupling of supercritical fluid extractions with gas chromatography (SFE-GC) allows the extraction, concentration, and gas chromatographic analysis of organic analytes from solid samples to be performed in less than 1 h. Coupling of the supercritical fluid extraction step with a capillary gas chromatographic column is achieved using a standard on-column injector and requires no modification of the gas chromatograph. Maximum sensitivity is achieved and analyte degradation or loss is minimized since the extracted species are quantitatively transferred into the fusedsilica capillary gas chromatographic column where they are cryogenically focused prior to normal gas chromatographic analysis using flame ionization (SFE-GC/FID) or mass spectral (SFE-GC/MS) detection. SFE-GC analysis yields good chromatographic peak shapes that compare favorably with those obtained using standard on-column injection techniques. Class-selective extractions can be achieved by performing multiple SFE-GC analyses with different extraction pressures. The ability of coupled SFE-GC to yield rapid extraction and analysis of organic analytes is demonstrated for a variety of samples including polycyclic aromatic hydrocarbons (PAHs) from treated wood, urban dust, and river sediment, phenolic species from wood smoke particulates, nicotine from tobacco, biological markers from coal, and flavor components from food products.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf Ne9df0bab8c834867913f5f72fb63b48e
21 Nf38c16d7aa594c5cbeb676cce25c635a
22 sg:journal.1357342
23 schema:name Rapid extraction and analysis of organic compounds from solid samples using coupled supercritical fluid extraction/gas chromatography
24 schema:pagination 211-215
25 schema:productId N0055eaa324fb4588aea9b6aff3d0f8c5
26 N950df9ddd00341dcafb6c8273b9b3b7e
27 Nd229c62ad7384947813390eb10a180d0
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011746026
29 https://doi.org/10.1007/bf00515607
30 schema:sdDatePublished 2019-04-11T13:49
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N80f3670000e847c48d2562c2e1a6a712
33 schema:url http://link.springer.com/10.1007/BF00515607
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N0055eaa324fb4588aea9b6aff3d0f8c5 schema:name dimensions_id
38 schema:value pub.1011746026
39 rdf:type schema:PropertyValue
40 N47c0f27c36064c64a4b0a38242f8fa07 rdf:first sg:person.016432550551.99
41 rdf:rest rdf:nil
42 N503349c1f008441d9519f5c949ed755d rdf:first sg:person.01360242230.19
43 rdf:rest Na76997a3fb6041748fedea00c95d8211
44 N80f3670000e847c48d2562c2e1a6a712 schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 N950df9ddd00341dcafb6c8273b9b3b7e schema:name doi
47 schema:value 10.1007/bf00515607
48 rdf:type schema:PropertyValue
49 Na76997a3fb6041748fedea00c95d8211 rdf:first sg:person.01137073466.36
50 rdf:rest N47c0f27c36064c64a4b0a38242f8fa07
51 Nd229c62ad7384947813390eb10a180d0 schema:name readcube_id
52 schema:value 37f6c644da712f8a1f02d83ba86ceea15a4ce7ce4182b25a68c59163a2261932
53 rdf:type schema:PropertyValue
54 Ne9df0bab8c834867913f5f72fb63b48e schema:volumeNumber 330
55 rdf:type schema:PublicationVolume
56 Nf38c16d7aa594c5cbeb676cce25c635a schema:issueNumber 3
57 rdf:type schema:PublicationIssue
58 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
59 schema:name Chemical Sciences
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0301 schema:inDefinedTermSet anzsrc-for:
62 schema:name Analytical Chemistry
63 rdf:type schema:DefinedTerm
64 sg:journal.1357342 schema:issn 1618-2642
65 1618-2650
66 schema:name Analytical and Bioanalytical Chemistry
67 rdf:type schema:Periodical
68 sg:person.01137073466.36 schema:affiliation https://www.grid.ac/institutes/grid.266862.e
69 schema:familyName Miller
70 schema:givenName David J.
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137073466.36
72 rdf:type schema:Person
73 sg:person.01360242230.19 schema:affiliation https://www.grid.ac/institutes/grid.266862.e
74 schema:familyName Hawthorne
75 schema:givenName Steven B.
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360242230.19
77 rdf:type schema:Person
78 sg:person.016432550551.99 schema:affiliation https://www.grid.ac/institutes/grid.266862.e
79 schema:familyName Krieger
80 schema:givenName Mark S.
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016432550551.99
82 rdf:type schema:Person
83 https://doi.org/10.1002/ange.19780901009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036462669
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1016/0016-2361(85)90015-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034147248
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1016/s0021-9673(00)96341-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007163900
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1016/s0021-9673(01)83289-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018025246
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/s0021-9673(01)83763-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031959967
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1021/ac00128a008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054974201
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1021/ac00131a021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054974561
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1021/ac00134a024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054974859
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1021/ac00140a026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054975324
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1093/chromsci/24.6.258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059464038
102 rdf:type schema:CreativeWork
103 https://www.grid.ac/institutes/grid.266862.e schema:alternateName University of North Dakota
104 schema:name Energy and Minerals Research Center, University of North Dakota, 58202, Grand Forks, ND, USA
105 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...