A model for the rapid vegetative segregation of multiple chloroplast genomes in Chlamydomonas: Assumptions and predictions of the model View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1980-02

AUTHORS

Karen P. VanWinkle-Swift

ABSTRACT

Physical evidence indicates that the chloroplast DNA of Chlamydomonas reinhardtii is composed of approximately 75 copies of a small unique sequence. Genetic analysis of zygotes biparental for chloroplast genes shows rapid vegetative segregation of parental chloroplast alleles. Zygote clones composed entirely of homoplasmic progeny cells predominate within 10-20 post-mating generations. A model is proposed here which reconciles the high multiplicity of chloroplast genes with their rapid vegetative segregation rates. Clustering of genomes into a small number of discrete areas (nucleoids) within the chloroplast reduces the effective number of segregating units. A non-random distribution of nucleoids to daughter cells, dictated solely by the spatial arrangement of parental nucleoids with respect to the plane of chloroplast division, further increases the rate of segregation from heteroplasmic cells. Recombination between parental chloroplast genomes is viewed as an indication of nucleoid fusion, and can account for differences in the patterns and rates of segregation at different gene loci. Within such fused nucleoids, clustering of parental genomes and a non-random distribution, again based solely on physical positioning of the genomes, to daughter nucleoids, could act to promote rapid genetic purification of heteroplasmic nucleoids. The effects of biased parental nucleoid ratios, and of potentially unequal nucleoid distributions to daughter chloroplasts are also discussed with respect to observed rates and patterns of chloroplast gene segregation. More... »

PAGES

113-125

References to SciGraph publications

Journal

TITLE

Current Genetics

ISSUE

2

VOLUME

1

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00446957

DOI

http://dx.doi.org/10.1007/bf00446957

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036295012

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24190835


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Duke University", 
          "id": "https://www.grid.ac/institutes/grid.26009.3d", 
          "name": [
            "Department of Zoology, Duke University, 27706, Durham, North Carolina, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "VanWinkle-Swift", 
        "givenName": "Karen P.", 
        "id": "sg:person.01133673541.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133673541.18"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00268683", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001521710", 
          "https://doi.org/10.1007/bf00268683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00268683", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001521710", 
          "https://doi.org/10.1007/bf00268683"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1508/cytologia.20.315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002659948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00446960", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005600709", 
          "https://doi.org/10.1007/bf00446960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00446960", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005600709", 
          "https://doi.org/10.1007/bf00446960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.61.1.324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008522482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcp.1040700408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009322482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0147-619x(78)90009-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010419315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1085/jgp.37.6.729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013477461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-12-614650-9.50009-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014513595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1508/cytologia.32.361", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014576714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.72.1.358", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015150498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0065-2660(08)60247-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017026022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1083/jcb.13.3.383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019037936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00389298", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019219128", 
          "https://doi.org/10.1007/bf00389298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00389298", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019219128", 
          "https://doi.org/10.1007/bf00389298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00392916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021763289", 
          "https://doi.org/10.1007/bf00392916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00392916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021763289", 
          "https://doi.org/10.1007/bf00392916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1083/jcb.59.2.318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022350544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2787(76)90287-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024104086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-2787(76)90287-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024104086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00285922", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026308828", 
          "https://doi.org/10.1007/bf00285922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.74.8.3193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030319913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0014-4827(78)90040-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031236334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/228333a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032002453", 
          "https://doi.org/10.1038/228333a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00272804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034882600", 
          "https://doi.org/10.1007/bf00272804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00272804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034882600", 
          "https://doi.org/10.1007/bf00272804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(71)90375-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038731232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-5320(67)80016-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040305544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.ge.12.120178.002351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041357087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-5320(70)80019-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042143690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1529-8817.1970.tb02348.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042218228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.68.6.1157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044735546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/275749a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047271787", 
          "https://doi.org/10.1038/275749a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1529-8817.1977.tb00589.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061941244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1529-8817.1977.tb00589.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061941244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076140450", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077358735", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077358736", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077358737", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1080226852", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1080348469", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1080441434", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1080452356", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1081137627", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1980-02", 
    "datePublishedReg": "1980-02-01", 
    "description": "Physical evidence indicates that the chloroplast DNA of Chlamydomonas reinhardtii is composed of approximately 75 copies of a small unique sequence. Genetic analysis of zygotes biparental for chloroplast genes shows rapid vegetative segregation of parental chloroplast alleles. Zygote clones composed entirely of homoplasmic progeny cells predominate within 10-20 post-mating generations. A model is proposed here which reconciles the high multiplicity of chloroplast genes with their rapid vegetative segregation rates. Clustering of genomes into a small number of discrete areas (nucleoids) within the chloroplast reduces the effective number of segregating units. A non-random distribution of nucleoids to daughter cells, dictated solely by the spatial arrangement of parental nucleoids with respect to the plane of chloroplast division, further increases the rate of segregation from heteroplasmic cells. Recombination between parental chloroplast genomes is viewed as an indication of nucleoid fusion, and can account for differences in the patterns and rates of segregation at different gene loci. Within such fused nucleoids, clustering of parental genomes and a non-random distribution, again based solely on physical positioning of the genomes, to daughter nucleoids, could act to promote rapid genetic purification of heteroplasmic nucleoids. The effects of biased parental nucleoid ratios, and of potentially unequal nucleoid distributions to daughter chloroplasts are also discussed with respect to observed rates and patterns of chloroplast gene segregation. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf00446957", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1091193", 
        "issn": [
          "0172-8083", 
          "1432-0983"
        ], 
        "name": "Current Genetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "1"
      }
    ], 
    "name": "A model for the rapid vegetative segregation of multiple chloroplast genomes in Chlamydomonas: Assumptions and predictions of the model", 
    "pagination": "113-125", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ace511438a8fc9e6ddd2ed1d82d45280ae172cecf91c9c0f9e29ef792c293bed"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24190835"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8004904"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00446957"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1036295012"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00446957", 
      "https://app.dimensions.ai/details/publication/pub.1036295012"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130793_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF00446957"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00446957'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00446957'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00446957'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00446957'


 

This table displays all metadata directly associated to this object as RDF triples.

182 TRIPLES      21 PREDICATES      67 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00446957 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N89a844439c0c43b18e3227be9ae63fbc
4 schema:citation sg:pub.10.1007/bf00268683
5 sg:pub.10.1007/bf00272804
6 sg:pub.10.1007/bf00285922
7 sg:pub.10.1007/bf00389298
8 sg:pub.10.1007/bf00392916
9 sg:pub.10.1007/bf00446960
10 sg:pub.10.1038/228333a0
11 sg:pub.10.1038/275749a0
12 https://app.dimensions.ai/details/publication/pub.1076140450
13 https://app.dimensions.ai/details/publication/pub.1077358735
14 https://app.dimensions.ai/details/publication/pub.1077358736
15 https://app.dimensions.ai/details/publication/pub.1077358737
16 https://app.dimensions.ai/details/publication/pub.1080226852
17 https://app.dimensions.ai/details/publication/pub.1080348469
18 https://app.dimensions.ai/details/publication/pub.1080441434
19 https://app.dimensions.ai/details/publication/pub.1080452356
20 https://app.dimensions.ai/details/publication/pub.1081137627
21 https://doi.org/10.1002/jcp.1040700408
22 https://doi.org/10.1016/0005-2787(76)90287-2
23 https://doi.org/10.1016/0014-4827(78)90040-x
24 https://doi.org/10.1016/0022-2836(71)90375-5
25 https://doi.org/10.1016/0147-619x(78)90009-4
26 https://doi.org/10.1016/b978-0-12-614650-9.50009-4
27 https://doi.org/10.1016/s0022-5320(67)80016-9
28 https://doi.org/10.1016/s0022-5320(70)80019-3
29 https://doi.org/10.1016/s0065-2660(08)60247-3
30 https://doi.org/10.1073/pnas.61.1.324
31 https://doi.org/10.1073/pnas.68.6.1157
32 https://doi.org/10.1073/pnas.72.1.358
33 https://doi.org/10.1073/pnas.74.8.3193
34 https://doi.org/10.1083/jcb.13.3.383
35 https://doi.org/10.1083/jcb.59.2.318
36 https://doi.org/10.1085/jgp.37.6.729
37 https://doi.org/10.1111/j.1529-8817.1970.tb02348.x
38 https://doi.org/10.1111/j.1529-8817.1977.tb00589.x
39 https://doi.org/10.1146/annurev.ge.12.120178.002351
40 https://doi.org/10.1508/cytologia.20.315
41 https://doi.org/10.1508/cytologia.32.361
42 schema:datePublished 1980-02
43 schema:datePublishedReg 1980-02-01
44 schema:description Physical evidence indicates that the chloroplast DNA of Chlamydomonas reinhardtii is composed of approximately 75 copies of a small unique sequence. Genetic analysis of zygotes biparental for chloroplast genes shows rapid vegetative segregation of parental chloroplast alleles. Zygote clones composed entirely of homoplasmic progeny cells predominate within 10-20 post-mating generations. A model is proposed here which reconciles the high multiplicity of chloroplast genes with their rapid vegetative segregation rates. Clustering of genomes into a small number of discrete areas (nucleoids) within the chloroplast reduces the effective number of segregating units. A non-random distribution of nucleoids to daughter cells, dictated solely by the spatial arrangement of parental nucleoids with respect to the plane of chloroplast division, further increases the rate of segregation from heteroplasmic cells. Recombination between parental chloroplast genomes is viewed as an indication of nucleoid fusion, and can account for differences in the patterns and rates of segregation at different gene loci. Within such fused nucleoids, clustering of parental genomes and a non-random distribution, again based solely on physical positioning of the genomes, to daughter nucleoids, could act to promote rapid genetic purification of heteroplasmic nucleoids. The effects of biased parental nucleoid ratios, and of potentially unequal nucleoid distributions to daughter chloroplasts are also discussed with respect to observed rates and patterns of chloroplast gene segregation.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree false
48 schema:isPartOf N3299f55aabca498993c66c6df86f52fd
49 Nf3e3a6aa827d486caa27cb1575abe102
50 sg:journal.1091193
51 schema:name A model for the rapid vegetative segregation of multiple chloroplast genomes in Chlamydomonas: Assumptions and predictions of the model
52 schema:pagination 113-125
53 schema:productId N041b7175ca6e45eab187c9320bf6d4ac
54 N2d7e82f776cd47998b8d38a05aa1f746
55 N35b78b634a544508ac6bb4125b9e4cc5
56 N83bcff53fed442e89816570687f8c316
57 Nf8b56faec7bd4175a2b860d788081b57
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036295012
59 https://doi.org/10.1007/bf00446957
60 schema:sdDatePublished 2019-04-11T13:48
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher Nd73d89ad64054dffbb272b84eb44149c
63 schema:url http://link.springer.com/10.1007/BF00446957
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N041b7175ca6e45eab187c9320bf6d4ac schema:name pubmed_id
68 schema:value 24190835
69 rdf:type schema:PropertyValue
70 N2d7e82f776cd47998b8d38a05aa1f746 schema:name doi
71 schema:value 10.1007/bf00446957
72 rdf:type schema:PropertyValue
73 N3299f55aabca498993c66c6df86f52fd schema:volumeNumber 1
74 rdf:type schema:PublicationVolume
75 N35b78b634a544508ac6bb4125b9e4cc5 schema:name dimensions_id
76 schema:value pub.1036295012
77 rdf:type schema:PropertyValue
78 N83bcff53fed442e89816570687f8c316 schema:name nlm_unique_id
79 schema:value 8004904
80 rdf:type schema:PropertyValue
81 N89a844439c0c43b18e3227be9ae63fbc rdf:first sg:person.01133673541.18
82 rdf:rest rdf:nil
83 Nd73d89ad64054dffbb272b84eb44149c schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 Nf3e3a6aa827d486caa27cb1575abe102 schema:issueNumber 2
86 rdf:type schema:PublicationIssue
87 Nf8b56faec7bd4175a2b860d788081b57 schema:name readcube_id
88 schema:value ace511438a8fc9e6ddd2ed1d82d45280ae172cecf91c9c0f9e29ef792c293bed
89 rdf:type schema:PropertyValue
90 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
91 schema:name Biological Sciences
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
94 schema:name Genetics
95 rdf:type schema:DefinedTerm
96 sg:journal.1091193 schema:issn 0172-8083
97 1432-0983
98 schema:name Current Genetics
99 rdf:type schema:Periodical
100 sg:person.01133673541.18 schema:affiliation https://www.grid.ac/institutes/grid.26009.3d
101 schema:familyName VanWinkle-Swift
102 schema:givenName Karen P.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01133673541.18
104 rdf:type schema:Person
105 sg:pub.10.1007/bf00268683 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001521710
106 https://doi.org/10.1007/bf00268683
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/bf00272804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034882600
109 https://doi.org/10.1007/bf00272804
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/bf00285922 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026308828
112 https://doi.org/10.1007/bf00285922
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/bf00389298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019219128
115 https://doi.org/10.1007/bf00389298
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/bf00392916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021763289
118 https://doi.org/10.1007/bf00392916
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/bf00446960 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005600709
121 https://doi.org/10.1007/bf00446960
122 rdf:type schema:CreativeWork
123 sg:pub.10.1038/228333a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032002453
124 https://doi.org/10.1038/228333a0
125 rdf:type schema:CreativeWork
126 sg:pub.10.1038/275749a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047271787
127 https://doi.org/10.1038/275749a0
128 rdf:type schema:CreativeWork
129 https://app.dimensions.ai/details/publication/pub.1076140450 schema:CreativeWork
130 https://app.dimensions.ai/details/publication/pub.1077358735 schema:CreativeWork
131 https://app.dimensions.ai/details/publication/pub.1077358736 schema:CreativeWork
132 https://app.dimensions.ai/details/publication/pub.1077358737 schema:CreativeWork
133 https://app.dimensions.ai/details/publication/pub.1080226852 schema:CreativeWork
134 https://app.dimensions.ai/details/publication/pub.1080348469 schema:CreativeWork
135 https://app.dimensions.ai/details/publication/pub.1080441434 schema:CreativeWork
136 https://app.dimensions.ai/details/publication/pub.1080452356 schema:CreativeWork
137 https://app.dimensions.ai/details/publication/pub.1081137627 schema:CreativeWork
138 https://doi.org/10.1002/jcp.1040700408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009322482
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/0005-2787(76)90287-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024104086
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/0014-4827(78)90040-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031236334
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/0022-2836(71)90375-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038731232
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/0147-619x(78)90009-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010419315
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/b978-0-12-614650-9.50009-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014513595
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/s0022-5320(67)80016-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040305544
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/s0022-5320(70)80019-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042143690
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/s0065-2660(08)60247-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017026022
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1073/pnas.61.1.324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008522482
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1073/pnas.68.6.1157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044735546
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1073/pnas.72.1.358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015150498
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1073/pnas.74.8.3193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030319913
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1083/jcb.13.3.383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019037936
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1083/jcb.59.2.318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022350544
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1085/jgp.37.6.729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013477461
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1111/j.1529-8817.1970.tb02348.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1042218228
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1111/j.1529-8817.1977.tb00589.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1061941244
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1146/annurev.ge.12.120178.002351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041357087
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1508/cytologia.20.315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002659948
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1508/cytologia.32.361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014576714
179 rdf:type schema:CreativeWork
180 https://www.grid.ac/institutes/grid.26009.3d schema:alternateName Duke University
181 schema:name Department of Zoology, Duke University, 27706, Durham, North Carolina, USA
182 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...