Ontology type: schema:ScholarlyArticle
1978-08
AUTHORS ABSTRACTCell walls were prepared from freeze-dried samples of 7 strains of Methanobacterium by mechanical disintegration of the cells followed by incubation with trypsin. Electron microscopy revealed the presence of sacculi exhibiting the shape of the original cells, on which no surface structure could be detected. Ultrathin sections of the isolated sacculi showed a homogenously electron dense layer of about 10–15 nm in width. The ash content varied between 8 and 18% of dry weight. The sacculi of all the strains contained Lys: Ala: Glu: GlcNAc or GalNAc in a molar ratio of about 1:1.2:2:1. In one strain (M. ruminantium M 1) alanine is replaced by threonine, however. Neutral sugars and-in some strains-additional amounts of the amino sugars were present in variable amounts, and could be removed by formamide extraction or HF treatment without destroying the sacculi. No muramic acid or d-amino acids typical of peptidoglycan were found. Therefore, the sacculi of the methanobacteria consist of a different polymer containing a set of three l-amino acids and one N-acetylated amino sugar. From cells of Methanospirillum hungatii no sacculi, but tube-like sheaths could be isolated, which tend to fracture perpendicularly to the long axis of the sheath along the fibrills seen on the surface. The sheaths consist of protein containing 18 amino acids and small amounts of neutral sugars. They are resistent to the proteinases tested and are not disintegrated by boiling in 2% sodium dodecylsulfate for 30 min.The three Gram-negative strains Black Sea isolate JR-1, Cariaco isolate JR-1 and Methanobacterium mobile do not contain a rigid sacculus, but merely a SDS-sensitive surface layer composed of regularly arranged protein subunits. This evidence indicates that, within the methanogens, different cell wall polymers characteristic of particular groups of organisms may have evolved during evolution, and supports the hypothesis that the evolution of the methanogens was separated from that of the peptidoglycan-containing procaryotic organisms at a very early stage. More... »
PAGES141-152
http://scigraph.springernature.com/pub.10.1007/bf00415722
DOIhttp://dx.doi.org/10.1007/bf00415722
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1003574754
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/697504
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biological Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biochemistry and Cell Biology",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Acetates",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Amino Acids",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Amino Sugars",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Carbohydrates",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Cations",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Cell Wall",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Euryarchaeota",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Peptidoglycan",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Species Specificity",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Botanisches Institut der Universit\u00e4t M\u00fcnchen, Menzinger Str. 67, D-8000, M\u00fcnchen 19, Federal Republic of Germany",
"id": "http://www.grid.ac/institutes/grid.5252.0",
"name": [
"Botanisches Institut der Universit\u00e4t M\u00fcnchen, Menzinger Str. 67, D-8000, M\u00fcnchen 19, Federal Republic of Germany"
],
"type": "Organization"
},
"familyName": "Kandler",
"givenName": "Otto",
"id": "sg:person.01040663125.41",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040663125.41"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Botanisches Institut der Universit\u00e4t M\u00fcnchen, Menzinger Str. 67, D-8000, M\u00fcnchen 19, Federal Republic of Germany",
"id": "http://www.grid.ac/institutes/grid.5252.0",
"name": [
"Botanisches Institut der Universit\u00e4t M\u00fcnchen, Menzinger Str. 67, D-8000, M\u00fcnchen 19, Federal Republic of Germany"
],
"type": "Organization"
},
"familyName": "K\u00f6nig",
"givenName": "Helmut",
"id": "sg:person.0672217216.47",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672217216.47"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf01796092",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049567586",
"https://doi.org/10.1007/bf01796092"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00428580",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047664693",
"https://doi.org/10.1007/bf00428580"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00447133",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039665349",
"https://doi.org/10.1007/bf00447133"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/166444b0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007899685",
"https://doi.org/10.1038/166444b0"
],
"type": "CreativeWork"
}
],
"datePublished": "1978-08",
"datePublishedReg": "1978-08-01",
"description": "Cell walls were prepared from freeze-dried samples of 7 strains of Methanobacterium by mechanical disintegration of the cells followed by incubation with trypsin. Electron microscopy revealed the presence of sacculi exhibiting the shape of the original cells, on which no surface structure could be detected. Ultrathin sections of the isolated sacculi showed a homogenously electron dense layer of about 10\u201315 nm in width. The ash content varied between 8 and 18% of dry weight. The sacculi of all the strains contained Lys: Ala: Glu: GlcNAc or GalNAc in a molar ratio of about 1:1.2:2:1. In one strain (M. ruminantium M 1) alanine is replaced by threonine, however. Neutral sugars and-in some strains-additional amounts of the amino sugars were present in variable amounts, and could be removed by formamide extraction or HF treatment without destroying the sacculi. No muramic acid or d-amino acids typical of peptidoglycan were found. Therefore, the sacculi of the methanobacteria consist of a different polymer containing a set of three l-amino acids and one N-acetylated amino sugar. From cells of Methanospirillum hungatii no sacculi, but tube-like sheaths could be isolated, which tend to fracture perpendicularly to the long axis of the sheath along the fibrills seen on the surface. The sheaths consist of protein containing 18 amino acids and small amounts of neutral sugars. They are resistent to the proteinases tested and are not disintegrated by boiling in 2% sodium dodecylsulfate for 30 min.The three Gram-negative strains Black Sea isolate JR-1, Cariaco isolate JR-1 and Methanobacterium mobile do not contain a rigid sacculus, but merely a SDS-sensitive surface layer composed of regularly arranged protein subunits. This evidence indicates that, within the methanogens, different cell wall polymers characteristic of particular groups of organisms may have evolved during evolution, and supports the hypothesis that the evolution of the methanogens was separated from that of the peptidoglycan-containing procaryotic organisms at a very early stage.",
"genre": "article",
"id": "sg:pub.10.1007/bf00415722",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1018945",
"issn": [
"0302-8933",
"1432-072X"
],
"name": "Archives of Microbiology",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "118"
}
],
"keywords": [
"amino acids",
"cells",
"acetylated amino sugars",
"formamide extraction",
"HF treatment",
"early stages",
"sheath",
"ultrathin sections",
"amino sugars",
"original cells",
"treatment",
"long axis",
"acid",
"variable amounts",
"neutral sugars",
"strains",
"group",
"sacculi",
"sugars",
"min",
"particular group",
"proteinases",
"incubation",
"resistent",
"evidence",
"protein subunits",
"electron-dense layer",
"wall",
"weight",
"protein",
"GalNAc",
"trypsin",
"Glu",
"different cell wall polymers",
"muramic acid",
"fibrills",
"surface layer",
"JR-1",
"presence",
"Ala",
"hypothesis",
"organisms",
"different polymers",
"dense layer",
"mechanical disintegration",
"subunits",
"freeze-dried samples",
"bacteria",
"amount",
"alanine",
"sacculus",
"stage",
"surface structure",
"Lys",
"samples",
"electron microscopy",
"peptidoglycan",
"small amount",
"GlcNAc",
"threonine",
"ash content",
"axis",
"ratio",
"dry weight",
"layer",
"polymers",
"sections",
"chemical composition",
"cell wall",
"molar ratio",
"methanogenic bacteria",
"rigid sacculus",
"content",
"surface",
"microscopy",
"methanogens",
"disintegration",
"extraction",
"width",
"sodium dodecylsulfate",
"shape",
"Black Sea",
"Methanobacterium",
"structure",
"evolution",
"composition",
"consist",
"Methanospirillum hungatii",
"procaryotic organisms",
"Sea",
"mobile",
"dodecylsulfate",
"cell wall polymers",
"wall polymers",
"set",
"hungatii"
],
"name": "Chemical composition of the peptidoglycan-free cell walls of methanogenic bacteria",
"pagination": "141-152",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1003574754"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/bf00415722"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"697504"
]
}
],
"sameAs": [
"https://doi.org/10.1007/bf00415722",
"https://app.dimensions.ai/details/publication/pub.1003574754"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T09:38",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_118.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/bf00415722"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00415722'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00415722'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00415722'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00415722'
This table displays all metadata directly associated to this object as RDF triples.
217 TRIPLES
22 PREDICATES
136 URIs
124 LITERALS
16 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/bf00415722 | schema:about | N61d43d3d0a9947ac98c39d4b4d2d2ee7 |
2 | ″ | ″ | N71b2360bda55442cbd18df5b07a25a72 |
3 | ″ | ″ | N87c5cf4e9ed64b63a3ea3c990b239f18 |
4 | ″ | ″ | N950d0e90b2734cf792d7b04228284fb0 |
5 | ″ | ″ | Na9a8ad6fe03a402687deea7916a7813c |
6 | ″ | ″ | Neaab02c5bc414874a00bc16b6b95d273 |
7 | ″ | ″ | Nefe0788d88b1448ab014e0d0e3305030 |
8 | ″ | ″ | Nf1231f8482c6471f8adaf64247b98613 |
9 | ″ | ″ | Nfa090d369f35409fb225773071eb07e1 |
10 | ″ | ″ | anzsrc-for:06 |
11 | ″ | ″ | anzsrc-for:0601 |
12 | ″ | schema:author | N63f6da18c5a9400d995aef14a1090942 |
13 | ″ | schema:citation | sg:pub.10.1007/bf00428580 |
14 | ″ | ″ | sg:pub.10.1007/bf00447133 |
15 | ″ | ″ | sg:pub.10.1007/bf01796092 |
16 | ″ | ″ | sg:pub.10.1038/166444b0 |
17 | ″ | schema:datePublished | 1978-08 |
18 | ″ | schema:datePublishedReg | 1978-08-01 |
19 | ″ | schema:description | Cell walls were prepared from freeze-dried samples of 7 strains of Methanobacterium by mechanical disintegration of the cells followed by incubation with trypsin. Electron microscopy revealed the presence of sacculi exhibiting the shape of the original cells, on which no surface structure could be detected. Ultrathin sections of the isolated sacculi showed a homogenously electron dense layer of about 10–15 nm in width. The ash content varied between 8 and 18% of dry weight. The sacculi of all the strains contained Lys: Ala: Glu: GlcNAc or GalNAc in a molar ratio of about 1:1.2:2:1. In one strain (M. ruminantium M 1) alanine is replaced by threonine, however. Neutral sugars and-in some strains-additional amounts of the amino sugars were present in variable amounts, and could be removed by formamide extraction or HF treatment without destroying the sacculi. No muramic acid or d-amino acids typical of peptidoglycan were found. Therefore, the sacculi of the methanobacteria consist of a different polymer containing a set of three l-amino acids and one N-acetylated amino sugar. From cells of Methanospirillum hungatii no sacculi, but tube-like sheaths could be isolated, which tend to fracture perpendicularly to the long axis of the sheath along the fibrills seen on the surface. The sheaths consist of protein containing 18 amino acids and small amounts of neutral sugars. They are resistent to the proteinases tested and are not disintegrated by boiling in 2% sodium dodecylsulfate for 30 min.The three Gram-negative strains Black Sea isolate JR-1, Cariaco isolate JR-1 and Methanobacterium mobile do not contain a rigid sacculus, but merely a SDS-sensitive surface layer composed of regularly arranged protein subunits. This evidence indicates that, within the methanogens, different cell wall polymers characteristic of particular groups of organisms may have evolved during evolution, and supports the hypothesis that the evolution of the methanogens was separated from that of the peptidoglycan-containing procaryotic organisms at a very early stage. |
20 | ″ | schema:genre | article |
21 | ″ | schema:inLanguage | en |
22 | ″ | schema:isAccessibleForFree | false |
23 | ″ | schema:isPartOf | Na3514534e2944762ab680831cc06574a |
24 | ″ | ″ | Nac4ac9e3d82f4b5fa3fd5413539be8a8 |
25 | ″ | ″ | sg:journal.1018945 |
26 | ″ | schema:keywords | Ala |
27 | ″ | ″ | Black Sea |
28 | ″ | ″ | GalNAc |
29 | ″ | ″ | GlcNAc |
30 | ″ | ″ | Glu |
31 | ″ | ″ | HF treatment |
32 | ″ | ″ | JR-1 |
33 | ″ | ″ | Lys |
34 | ″ | ″ | Methanobacterium |
35 | ″ | ″ | Methanospirillum hungatii |
36 | ″ | ″ | Sea |
37 | ″ | ″ | acetylated amino sugars |
38 | ″ | ″ | acid |
39 | ″ | ″ | alanine |
40 | ″ | ″ | amino acids |
41 | ″ | ″ | amino sugars |
42 | ″ | ″ | amount |
43 | ″ | ″ | ash content |
44 | ″ | ″ | axis |
45 | ″ | ″ | bacteria |
46 | ″ | ″ | cell wall |
47 | ″ | ″ | cell wall polymers |
48 | ″ | ″ | cells |
49 | ″ | ″ | chemical composition |
50 | ″ | ″ | composition |
51 | ″ | ″ | consist |
52 | ″ | ″ | content |
53 | ″ | ″ | dense layer |
54 | ″ | ″ | different cell wall polymers |
55 | ″ | ″ | different polymers |
56 | ″ | ″ | disintegration |
57 | ″ | ″ | dodecylsulfate |
58 | ″ | ″ | dry weight |
59 | ″ | ″ | early stages |
60 | ″ | ″ | electron microscopy |
61 | ″ | ″ | electron-dense layer |
62 | ″ | ″ | evidence |
63 | ″ | ″ | evolution |
64 | ″ | ″ | extraction |
65 | ″ | ″ | fibrills |
66 | ″ | ″ | formamide extraction |
67 | ″ | ″ | freeze-dried samples |
68 | ″ | ″ | group |
69 | ″ | ″ | hungatii |
70 | ″ | ″ | hypothesis |
71 | ″ | ″ | incubation |
72 | ″ | ″ | layer |
73 | ″ | ″ | long axis |
74 | ″ | ″ | mechanical disintegration |
75 | ″ | ″ | methanogenic bacteria |
76 | ″ | ″ | methanogens |
77 | ″ | ″ | microscopy |
78 | ″ | ″ | min |
79 | ″ | ″ | mobile |
80 | ″ | ″ | molar ratio |
81 | ″ | ″ | muramic acid |
82 | ″ | ″ | neutral sugars |
83 | ″ | ″ | organisms |
84 | ″ | ″ | original cells |
85 | ″ | ″ | particular group |
86 | ″ | ″ | peptidoglycan |
87 | ″ | ″ | polymers |
88 | ″ | ″ | presence |
89 | ″ | ″ | procaryotic organisms |
90 | ″ | ″ | protein |
91 | ″ | ″ | protein subunits |
92 | ″ | ″ | proteinases |
93 | ″ | ″ | ratio |
94 | ″ | ″ | resistent |
95 | ″ | ″ | rigid sacculus |
96 | ″ | ″ | sacculi |
97 | ″ | ″ | sacculus |
98 | ″ | ″ | samples |
99 | ″ | ″ | sections |
100 | ″ | ″ | set |
101 | ″ | ″ | shape |
102 | ″ | ″ | sheath |
103 | ″ | ″ | small amount |
104 | ″ | ″ | sodium dodecylsulfate |
105 | ″ | ″ | stage |
106 | ″ | ″ | strains |
107 | ″ | ″ | structure |
108 | ″ | ″ | subunits |
109 | ″ | ″ | sugars |
110 | ″ | ″ | surface |
111 | ″ | ″ | surface layer |
112 | ″ | ″ | surface structure |
113 | ″ | ″ | threonine |
114 | ″ | ″ | treatment |
115 | ″ | ″ | trypsin |
116 | ″ | ″ | ultrathin sections |
117 | ″ | ″ | variable amounts |
118 | ″ | ″ | wall |
119 | ″ | ″ | wall polymers |
120 | ″ | ″ | weight |
121 | ″ | ″ | width |
122 | ″ | schema:name | Chemical composition of the peptidoglycan-free cell walls of methanogenic bacteria |
123 | ″ | schema:pagination | 141-152 |
124 | ″ | schema:productId | N4885b1c9ce984611aefc73fadd7287a5 |
125 | ″ | ″ | N533e03cfc7164fa3b07567621ec6d3ab |
126 | ″ | ″ | N66496e4d39e14f6f959206164f788a01 |
127 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1003574754 |
128 | ″ | ″ | https://doi.org/10.1007/bf00415722 |
129 | ″ | schema:sdDatePublished | 2022-05-10T09:38 |
130 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
131 | ″ | schema:sdPublisher | Nf5cd214bfa1b46358b85f64f04b572e9 |
132 | ″ | schema:url | https://doi.org/10.1007/bf00415722 |
133 | ″ | sgo:license | sg:explorer/license/ |
134 | ″ | sgo:sdDataset | articles |
135 | ″ | rdf:type | schema:ScholarlyArticle |
136 | N4885b1c9ce984611aefc73fadd7287a5 | schema:name | doi |
137 | ″ | schema:value | 10.1007/bf00415722 |
138 | ″ | rdf:type | schema:PropertyValue |
139 | N533e03cfc7164fa3b07567621ec6d3ab | schema:name | dimensions_id |
140 | ″ | schema:value | pub.1003574754 |
141 | ″ | rdf:type | schema:PropertyValue |
142 | N61d43d3d0a9947ac98c39d4b4d2d2ee7 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
143 | ″ | schema:name | Euryarchaeota |
144 | ″ | rdf:type | schema:DefinedTerm |
145 | N63f6da18c5a9400d995aef14a1090942 | rdf:first | sg:person.01040663125.41 |
146 | ″ | rdf:rest | Nd6dff67c34464014bf8c2b0b42b021ca |
147 | N66496e4d39e14f6f959206164f788a01 | schema:name | pubmed_id |
148 | ″ | schema:value | 697504 |
149 | ″ | rdf:type | schema:PropertyValue |
150 | N71b2360bda55442cbd18df5b07a25a72 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
151 | ″ | schema:name | Carbohydrates |
152 | ″ | rdf:type | schema:DefinedTerm |
153 | N87c5cf4e9ed64b63a3ea3c990b239f18 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
154 | ″ | schema:name | Peptidoglycan |
155 | ″ | rdf:type | schema:DefinedTerm |
156 | N950d0e90b2734cf792d7b04228284fb0 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
157 | ″ | schema:name | Species Specificity |
158 | ″ | rdf:type | schema:DefinedTerm |
159 | Na3514534e2944762ab680831cc06574a | schema:issueNumber | 2 |
160 | ″ | rdf:type | schema:PublicationIssue |
161 | Na9a8ad6fe03a402687deea7916a7813c | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
162 | ″ | schema:name | Amino Sugars |
163 | ″ | rdf:type | schema:DefinedTerm |
164 | Nac4ac9e3d82f4b5fa3fd5413539be8a8 | schema:volumeNumber | 118 |
165 | ″ | rdf:type | schema:PublicationVolume |
166 | Nd6dff67c34464014bf8c2b0b42b021ca | rdf:first | sg:person.0672217216.47 |
167 | ″ | rdf:rest | rdf:nil |
168 | Neaab02c5bc414874a00bc16b6b95d273 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
169 | ″ | schema:name | Cell Wall |
170 | ″ | rdf:type | schema:DefinedTerm |
171 | Nefe0788d88b1448ab014e0d0e3305030 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
172 | ″ | schema:name | Cations |
173 | ″ | rdf:type | schema:DefinedTerm |
174 | Nf1231f8482c6471f8adaf64247b98613 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
175 | ″ | schema:name | Acetates |
176 | ″ | rdf:type | schema:DefinedTerm |
177 | Nf5cd214bfa1b46358b85f64f04b572e9 | schema:name | Springer Nature - SN SciGraph project |
178 | ″ | rdf:type | schema:Organization |
179 | Nfa090d369f35409fb225773071eb07e1 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
180 | ″ | schema:name | Amino Acids |
181 | ″ | rdf:type | schema:DefinedTerm |
182 | anzsrc-for:06 | schema:inDefinedTermSet | anzsrc-for: |
183 | ″ | schema:name | Biological Sciences |
184 | ″ | rdf:type | schema:DefinedTerm |
185 | anzsrc-for:0601 | schema:inDefinedTermSet | anzsrc-for: |
186 | ″ | schema:name | Biochemistry and Cell Biology |
187 | ″ | rdf:type | schema:DefinedTerm |
188 | sg:journal.1018945 | schema:issn | 0302-8933 |
189 | ″ | ″ | 1432-072X |
190 | ″ | schema:name | Archives of Microbiology |
191 | ″ | schema:publisher | Springer Nature |
192 | ″ | rdf:type | schema:Periodical |
193 | sg:person.01040663125.41 | schema:affiliation | grid-institutes:grid.5252.0 |
194 | ″ | schema:familyName | Kandler |
195 | ″ | schema:givenName | Otto |
196 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01040663125.41 |
197 | ″ | rdf:type | schema:Person |
198 | sg:person.0672217216.47 | schema:affiliation | grid-institutes:grid.5252.0 |
199 | ″ | schema:familyName | König |
200 | ″ | schema:givenName | Helmut |
201 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672217216.47 |
202 | ″ | rdf:type | schema:Person |
203 | sg:pub.10.1007/bf00428580 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1047664693 |
204 | ″ | ″ | https://doi.org/10.1007/bf00428580 |
205 | ″ | rdf:type | schema:CreativeWork |
206 | sg:pub.10.1007/bf00447133 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1039665349 |
207 | ″ | ″ | https://doi.org/10.1007/bf00447133 |
208 | ″ | rdf:type | schema:CreativeWork |
209 | sg:pub.10.1007/bf01796092 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1049567586 |
210 | ″ | ″ | https://doi.org/10.1007/bf01796092 |
211 | ″ | rdf:type | schema:CreativeWork |
212 | sg:pub.10.1038/166444b0 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1007899685 |
213 | ″ | ″ | https://doi.org/10.1038/166444b0 |
214 | ″ | rdf:type | schema:CreativeWork |
215 | grid-institutes:grid.5252.0 | schema:alternateName | Botanisches Institut der Universität München, Menzinger Str. 67, D-8000, München 19, Federal Republic of Germany |
216 | ″ | schema:name | Botanisches Institut der Universität München, Menzinger Str. 67, D-8000, München 19, Federal Republic of Germany |
217 | ″ | rdf:type | schema:Organization |