Dissection of the transposition process: A transposon-encoded site-specific recombination system View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1979-10

AUTHORS

Avril Arthur, David Sherratt

ABSTRACT

Deletions of transposons Tn1 and Tn3 that extend into a region of the transposon that specifies a 19,000 molecular weight protein, are unable to resolve presumptive transposition intermediates in recA strains of Escherichia coli. For example, when transposition of such mutant transposons occurs from replicon A to replicon B, cointegrate molecules containing A and B separated by directly repeated copies of the transposons are efficiently produced. Such cointegrates are stable in a recA strain, but are resolved within a recA+ host into replicons A and B each containing a copy of the transposon. One mutant gives cointegrates that can be complemented to resolve when a wild type Tn3 is present in the same recA cell, whereas another gives cointegrates that cannot be resolved by complementation in trans. We suggest that the first such mutant still carries the sequences necessary for the recombination event whereas the latter has lost them.The presence of a Tn1/3 specified site-specific recombination system was confirmed by showing that naturally-occurring multimers of a Tn3 derivative of plasmid pMB8 can be efficiently resolved to monomers in a recA- strain, whereas dimers of pMB9 (a Tcr derivative of pMB8) and two deleted Tn3 derivatives of pMB8 that are defective in the production of the 19,000 molecular weight protein, were both stably maintained as dimers in a recA- strain. Analysis of the ability of multimeric forms of other pMB8::Tn3 deletion derivatives to be stably propagated in a recA- strain, has allowed the localization of the Tn3 sequences necessary for the recombination event. More... »

PAGES

267-274

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00397226

DOI

http://dx.doi.org/10.1007/bf00397226

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000194485

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/392228


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA Transposable Elements", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electrophoresis, Agar Gel", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Escherichia coli", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Markers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plasmids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Recombination, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transformation, Bacterial", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Biological Sciences, University of Sussex, Falmer, BN1 9QG, Brighton, England", 
          "id": "http://www.grid.ac/institutes/grid.12082.39", 
          "name": [
            "School of Biological Sciences, University of Sussex, Falmer, BN1 9QG, Brighton, England"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arthur", 
        "givenName": "Avril", 
        "id": "sg:person.01247553740.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247553740.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Biological Sciences, University of Sussex, Falmer, BN1 9QG, Brighton, England", 
          "id": "http://www.grid.ac/institutes/grid.12082.39", 
          "name": [
            "School of Biological Sciences, University of Sussex, Falmer, BN1 9QG, Brighton, England"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sherratt", 
        "givenName": "David", 
        "id": "sg:person.0626207736.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626207736.49"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00267325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074728175", 
          "https://doi.org/10.1007/bf00267325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00338689", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020799390", 
          "https://doi.org/10.1007/bf00338689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00268585", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079931536", 
          "https://doi.org/10.1007/bf00268585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00330839", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008882945", 
          "https://doi.org/10.1007/bf00330839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00267389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019456009", 
          "https://doi.org/10.1007/bf00267389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/274259a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015201548", 
          "https://doi.org/10.1038/274259a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1979-10", 
    "datePublishedReg": "1979-10-01", 
    "description": "Deletions of transposons Tn1 and Tn3 that extend into a region of the transposon that specifies a 19,000 molecular weight protein, are unable to resolve presumptive transposition intermediates in recA strains of Escherichia coli. For example, when transposition of such mutant transposons occurs from replicon A to replicon B, cointegrate molecules containing A and B separated by directly repeated copies of the transposons are efficiently produced. Such cointegrates are stable in a recA strain, but are resolved within a recA+ host into replicons A and B each containing a copy of the transposon. One mutant gives cointegrates that can be complemented to resolve when a wild type Tn3 is present in the same recA cell, whereas another gives cointegrates that cannot be resolved by complementation in trans. We suggest that the first such mutant still carries the sequences necessary for the recombination event whereas the latter has lost them.The presence of a Tn1/3 specified site-specific recombination system was confirmed by showing that naturally-occurring multimers of a Tn3 derivative of plasmid pMB8 can be efficiently resolved to monomers in a recA- strain, whereas dimers of pMB9 (a Tcr derivative of pMB8) and two deleted Tn3 derivatives of pMB8 that are defective in the production of the 19,000 molecular weight protein, were both stably maintained as dimers in a recA- strain. Analysis of the ability of multimeric forms of other pMB8::Tn3 deletion derivatives to be stably propagated in a recA- strain, has allowed the localization of the Tn3 sequences necessary for the recombination event.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf00397226", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297380", 
        "issn": [
          "1617-4615", 
          "1432-1874"
        ], 
        "name": "Molecular Genetics and Genomics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "175"
      }
    ], 
    "keywords": [
      "site-specific recombination system", 
      "recombination events", 
      "recombination system", 
      "molecular weight proteins", 
      "recA strain", 
      "Tn3 derivative", 
      "weight proteins", 
      "such mutants", 
      "recA cells", 
      "deletion derivatives", 
      "transposon", 
      "Escherichia coli", 
      "multimeric forms", 
      "transposition intermediates", 
      "transposon Tn1", 
      "mutant transposons", 
      "mutants", 
      "protein", 
      "transposition process", 
      "copies", 
      "sequence", 
      "complementation", 
      "Tn3", 
      "strains", 
      "deletion", 
      "coli", 
      "replicon", 
      "dimer", 
      "multimers", 
      "host", 
      "cells", 
      "localization", 
      "TN1", 
      "cointegrates", 
      "intermediates", 
      "molecules", 
      "events", 
      "trans", 
      "production", 
      "region", 
      "transposition", 
      "monomers", 
      "ability", 
      "Tn3 sequence", 
      "derivatives", 
      "presence", 
      "analysis", 
      "form", 
      "process", 
      "dissection", 
      "system", 
      "example"
    ], 
    "name": "Dissection of the transposition process: A transposon-encoded site-specific recombination system", 
    "pagination": "267-274", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000194485"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00397226"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "392228"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00397226", 
      "https://app.dimensions.ai/details/publication/pub.1000194485"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T21:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_118.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf00397226"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00397226'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00397226'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00397226'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00397226'


 

This table displays all metadata directly associated to this object as RDF triples.

184 TRIPLES      21 PREDICATES      94 URIs      80 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00397226 schema:about N21d7f9f32f8846adb6d4dc17b742dcfc
2 N36ea5d7f26054dbda98a34bd878f038b
3 N503c40fa629149caa71690ec03afbe4c
4 N5422a7ac0e4b44adbf2f0255d6231349
5 N601ca06ca92941d7911627fd44bf269b
6 N694a211410c546d5a92b78a0f46fcf50
7 N7431d8e98c86419e808a11660e444b0e
8 N7e3a5036924746b4a8516e9db8241f72
9 N86623afdb2e741f59f250ef54c95984e
10 Ne7c439b0854c4d31a26ac3dc5d8f3c2f
11 anzsrc-for:06
12 anzsrc-for:0601
13 schema:author Nbfc5708ea6fe4e9a9d18ef456a9d0edc
14 schema:citation sg:pub.10.1007/bf00267325
15 sg:pub.10.1007/bf00267389
16 sg:pub.10.1007/bf00268585
17 sg:pub.10.1007/bf00330839
18 sg:pub.10.1007/bf00338689
19 sg:pub.10.1038/274259a0
20 schema:datePublished 1979-10
21 schema:datePublishedReg 1979-10-01
22 schema:description Deletions of transposons Tn1 and Tn3 that extend into a region of the transposon that specifies a 19,000 molecular weight protein, are unable to resolve presumptive transposition intermediates in recA strains of Escherichia coli. For example, when transposition of such mutant transposons occurs from replicon A to replicon B, cointegrate molecules containing A and B separated by directly repeated copies of the transposons are efficiently produced. Such cointegrates are stable in a recA strain, but are resolved within a recA+ host into replicons A and B each containing a copy of the transposon. One mutant gives cointegrates that can be complemented to resolve when a wild type Tn3 is present in the same recA cell, whereas another gives cointegrates that cannot be resolved by complementation in trans. We suggest that the first such mutant still carries the sequences necessary for the recombination event whereas the latter has lost them.The presence of a Tn1/3 specified site-specific recombination system was confirmed by showing that naturally-occurring multimers of a Tn3 derivative of plasmid pMB8 can be efficiently resolved to monomers in a recA- strain, whereas dimers of pMB9 (a Tcr derivative of pMB8) and two deleted Tn3 derivatives of pMB8 that are defective in the production of the 19,000 molecular weight protein, were both stably maintained as dimers in a recA- strain. Analysis of the ability of multimeric forms of other pMB8::Tn3 deletion derivatives to be stably propagated in a recA- strain, has allowed the localization of the Tn3 sequences necessary for the recombination event.
23 schema:genre article
24 schema:isAccessibleForFree false
25 schema:isPartOf N5c5ad1cc0fec444db70e6c8e3641a6fe
26 N8d5d460771a84cdbb87919be486a62ad
27 sg:journal.1297380
28 schema:keywords Escherichia coli
29 TN1
30 Tn3
31 Tn3 derivative
32 Tn3 sequence
33 ability
34 analysis
35 cells
36 cointegrates
37 coli
38 complementation
39 copies
40 deletion
41 deletion derivatives
42 derivatives
43 dimer
44 dissection
45 events
46 example
47 form
48 host
49 intermediates
50 localization
51 molecular weight proteins
52 molecules
53 monomers
54 multimeric forms
55 multimers
56 mutant transposons
57 mutants
58 presence
59 process
60 production
61 protein
62 recA cells
63 recA strain
64 recombination events
65 recombination system
66 region
67 replicon
68 sequence
69 site-specific recombination system
70 strains
71 such mutants
72 system
73 trans
74 transposition
75 transposition intermediates
76 transposition process
77 transposon
78 transposon Tn1
79 weight proteins
80 schema:name Dissection of the transposition process: A transposon-encoded site-specific recombination system
81 schema:pagination 267-274
82 schema:productId Na3ec51ada64d40c0baf5a0724969580c
83 Ne926f8749f264e05ac10744cf831853d
84 Nfb857045032849c0a83cd803a7754a17
85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000194485
86 https://doi.org/10.1007/bf00397226
87 schema:sdDatePublished 2022-06-01T21:57
88 schema:sdLicense https://scigraph.springernature.com/explorer/license/
89 schema:sdPublisher N831074c02ef7477583360d977441e0a0
90 schema:url https://doi.org/10.1007/bf00397226
91 sgo:license sg:explorer/license/
92 sgo:sdDataset articles
93 rdf:type schema:ScholarlyArticle
94 N21d7f9f32f8846adb6d4dc17b742dcfc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Escherichia coli
96 rdf:type schema:DefinedTerm
97 N36ea5d7f26054dbda98a34bd878f038b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Plasmids
99 rdf:type schema:DefinedTerm
100 N503c40fa629149caa71690ec03afbe4c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Genes
102 rdf:type schema:DefinedTerm
103 N5422a7ac0e4b44adbf2f0255d6231349 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Genetic Markers
105 rdf:type schema:DefinedTerm
106 N5c5ad1cc0fec444db70e6c8e3641a6fe schema:issueNumber 3
107 rdf:type schema:PublicationIssue
108 N601ca06ca92941d7911627fd44bf269b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name DNA, Bacterial
110 rdf:type schema:DefinedTerm
111 N694a211410c546d5a92b78a0f46fcf50 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name DNA Transposable Elements
113 rdf:type schema:DefinedTerm
114 N7431d8e98c86419e808a11660e444b0e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Transformation, Bacterial
116 rdf:type schema:DefinedTerm
117 N7e3a5036924746b4a8516e9db8241f72 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Electrophoresis, Agar Gel
119 rdf:type schema:DefinedTerm
120 N831074c02ef7477583360d977441e0a0 schema:name Springer Nature - SN SciGraph project
121 rdf:type schema:Organization
122 N86623afdb2e741f59f250ef54c95984e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Models, Biological
124 rdf:type schema:DefinedTerm
125 N880dad17f4ad45bc9260410e323684b7 rdf:first sg:person.0626207736.49
126 rdf:rest rdf:nil
127 N8d5d460771a84cdbb87919be486a62ad schema:volumeNumber 175
128 rdf:type schema:PublicationVolume
129 Na3ec51ada64d40c0baf5a0724969580c schema:name doi
130 schema:value 10.1007/bf00397226
131 rdf:type schema:PropertyValue
132 Nbfc5708ea6fe4e9a9d18ef456a9d0edc rdf:first sg:person.01247553740.24
133 rdf:rest N880dad17f4ad45bc9260410e323684b7
134 Ne7c439b0854c4d31a26ac3dc5d8f3c2f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Recombination, Genetic
136 rdf:type schema:DefinedTerm
137 Ne926f8749f264e05ac10744cf831853d schema:name pubmed_id
138 schema:value 392228
139 rdf:type schema:PropertyValue
140 Nfb857045032849c0a83cd803a7754a17 schema:name dimensions_id
141 schema:value pub.1000194485
142 rdf:type schema:PropertyValue
143 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
144 schema:name Biological Sciences
145 rdf:type schema:DefinedTerm
146 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
147 schema:name Biochemistry and Cell Biology
148 rdf:type schema:DefinedTerm
149 sg:journal.1297380 schema:issn 1432-1874
150 1617-4615
151 schema:name Molecular Genetics and Genomics
152 schema:publisher Springer Nature
153 rdf:type schema:Periodical
154 sg:person.01247553740.24 schema:affiliation grid-institutes:grid.12082.39
155 schema:familyName Arthur
156 schema:givenName Avril
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247553740.24
158 rdf:type schema:Person
159 sg:person.0626207736.49 schema:affiliation grid-institutes:grid.12082.39
160 schema:familyName Sherratt
161 schema:givenName David
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626207736.49
163 rdf:type schema:Person
164 sg:pub.10.1007/bf00267325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074728175
165 https://doi.org/10.1007/bf00267325
166 rdf:type schema:CreativeWork
167 sg:pub.10.1007/bf00267389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019456009
168 https://doi.org/10.1007/bf00267389
169 rdf:type schema:CreativeWork
170 sg:pub.10.1007/bf00268585 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079931536
171 https://doi.org/10.1007/bf00268585
172 rdf:type schema:CreativeWork
173 sg:pub.10.1007/bf00330839 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008882945
174 https://doi.org/10.1007/bf00330839
175 rdf:type schema:CreativeWork
176 sg:pub.10.1007/bf00338689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020799390
177 https://doi.org/10.1007/bf00338689
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/274259a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015201548
180 https://doi.org/10.1038/274259a0
181 rdf:type schema:CreativeWork
182 grid-institutes:grid.12082.39 schema:alternateName School of Biological Sciences, University of Sussex, Falmer, BN1 9QG, Brighton, England
183 schema:name School of Biological Sciences, University of Sussex, Falmer, BN1 9QG, Brighton, England
184 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...