Finding all closed sets: A general approach View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1991-09

AUTHORS

Bernhard Ganter, Klaus Reuter

ABSTRACT

We present a unifying theoretical and algorithmic approach to the problems to determine all closed sets of a closure operator, to do this up to isomorphism, and to determine the elements of certain ideals of a power set. This will be done by generalizing the concept of closure operators using the interplay of several orders of a power set. More... »

PAGES

283-290

Journal

TITLE

Order

ISSUE

3

VOLUME

8

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00383449

DOI

http://dx.doi.org/10.1007/bf00383449

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020815872


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technical University of Darmstadt", 
          "id": "https://www.grid.ac/institutes/grid.6546.1", 
          "name": [
            "AG1, FB4, Technische Hochschule Darmstadt, D-6100, Darmstadt, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ganter", 
        "givenName": "Bernhard", 
        "id": "sg:person.010666171445.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010666171445.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University of Darmstadt", 
          "id": "https://www.grid.ac/institutes/grid.6546.1", 
          "name": [
            "AG1, FB4, Technische Hochschule Darmstadt, D-6100, Darmstadt, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Reuter", 
        "givenName": "Klaus", 
        "id": "sg:person.015666404435.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015666404435.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0167-5060(08)70325-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046123683"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1991-09", 
    "datePublishedReg": "1991-09-01", 
    "description": "We present a unifying theoretical and algorithmic approach to the problems to determine all closed sets of a closure operator, to do this up to isomorphism, and to determine the elements of certain ideals of a power set. This will be done by generalizing the concept of closure operators using the interplay of several orders of a power set.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf00383449", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136683", 
        "issn": [
          "0167-8094", 
          "1572-9273"
        ], 
        "name": "Order", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Finding all closed sets: A general approach", 
    "pagination": "283-290", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "632e40b49c6f277a34f388a9c8b390b20891c48302d7914e34ef5083a2f9f83f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00383449"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020815872"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00383449", 
      "https://app.dimensions.ai/details/publication/pub.1020815872"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130794_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF00383449"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00383449'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00383449'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00383449'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00383449'


 

This table displays all metadata directly associated to this object as RDF triples.

71 TRIPLES      21 PREDICATES      28 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00383449 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nf330a1e439574518aee6b9f199a19320
4 schema:citation https://doi.org/10.1016/s0167-5060(08)70325-x
5 schema:datePublished 1991-09
6 schema:datePublishedReg 1991-09-01
7 schema:description We present a unifying theoretical and algorithmic approach to the problems to determine all closed sets of a closure operator, to do this up to isomorphism, and to determine the elements of certain ideals of a power set. This will be done by generalizing the concept of closure operators using the interplay of several orders of a power set.
8 schema:genre research_article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N21c4631c8d7f4c46aba9bba9e7947f3a
12 Nc6208b788eb442e7b7378de7c50fb48c
13 sg:journal.1136683
14 schema:name Finding all closed sets: A general approach
15 schema:pagination 283-290
16 schema:productId N1209866db28c4d38a032076f04f6db4a
17 Ncf5ab4512a774a7fa86f5b9c309b52af
18 Ne1e483a1ae1749338e0cad41112e9109
19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020815872
20 https://doi.org/10.1007/bf00383449
21 schema:sdDatePublished 2019-04-11T13:49
22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
23 schema:sdPublisher Nec8211832ed9485e835517d3d0dbfbd6
24 schema:url http://link.springer.com/10.1007/BF00383449
25 sgo:license sg:explorer/license/
26 sgo:sdDataset articles
27 rdf:type schema:ScholarlyArticle
28 N1209866db28c4d38a032076f04f6db4a schema:name doi
29 schema:value 10.1007/bf00383449
30 rdf:type schema:PropertyValue
31 N21c4631c8d7f4c46aba9bba9e7947f3a schema:issueNumber 3
32 rdf:type schema:PublicationIssue
33 Nc6208b788eb442e7b7378de7c50fb48c schema:volumeNumber 8
34 rdf:type schema:PublicationVolume
35 Ncf5ab4512a774a7fa86f5b9c309b52af schema:name dimensions_id
36 schema:value pub.1020815872
37 rdf:type schema:PropertyValue
38 Nd3177981df4445298c6f5d3cb2622b80 rdf:first sg:person.015666404435.17
39 rdf:rest rdf:nil
40 Ne1e483a1ae1749338e0cad41112e9109 schema:name readcube_id
41 schema:value 632e40b49c6f277a34f388a9c8b390b20891c48302d7914e34ef5083a2f9f83f
42 rdf:type schema:PropertyValue
43 Nec8211832ed9485e835517d3d0dbfbd6 schema:name Springer Nature - SN SciGraph project
44 rdf:type schema:Organization
45 Nf330a1e439574518aee6b9f199a19320 rdf:first sg:person.010666171445.92
46 rdf:rest Nd3177981df4445298c6f5d3cb2622b80
47 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
48 schema:name Mathematical Sciences
49 rdf:type schema:DefinedTerm
50 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
51 schema:name Pure Mathematics
52 rdf:type schema:DefinedTerm
53 sg:journal.1136683 schema:issn 0167-8094
54 1572-9273
55 schema:name Order
56 rdf:type schema:Periodical
57 sg:person.010666171445.92 schema:affiliation https://www.grid.ac/institutes/grid.6546.1
58 schema:familyName Ganter
59 schema:givenName Bernhard
60 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010666171445.92
61 rdf:type schema:Person
62 sg:person.015666404435.17 schema:affiliation https://www.grid.ac/institutes/grid.6546.1
63 schema:familyName Reuter
64 schema:givenName Klaus
65 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015666404435.17
66 rdf:type schema:Person
67 https://doi.org/10.1016/s0167-5060(08)70325-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1046123683
68 rdf:type schema:CreativeWork
69 https://www.grid.ac/institutes/grid.6546.1 schema:alternateName Technical University of Darmstadt
70 schema:name AG1, FB4, Technische Hochschule Darmstadt, D-6100, Darmstadt, Germany
71 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...