Finding all closed sets: A general approach View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1991-09

AUTHORS

Bernhard Ganter, Klaus Reuter

ABSTRACT

We present a unifying theoretical and algorithmic approach to the problems to determine all closed sets of a closure operator, to do this up to isomorphism, and to determine the elements of certain ideals of a power set. This will be done by generalizing the concept of closure operators using the interplay of several orders of a power set. More... »

PAGES

283-290

Journal

TITLE

Order

ISSUE

3

VOLUME

8

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00383449

DOI

http://dx.doi.org/10.1007/bf00383449

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020815872


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technical University of Darmstadt", 
          "id": "https://www.grid.ac/institutes/grid.6546.1", 
          "name": [
            "AG1, FB4, Technische Hochschule Darmstadt, D-6100, Darmstadt, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ganter", 
        "givenName": "Bernhard", 
        "id": "sg:person.010666171445.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010666171445.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University of Darmstadt", 
          "id": "https://www.grid.ac/institutes/grid.6546.1", 
          "name": [
            "AG1, FB4, Technische Hochschule Darmstadt, D-6100, Darmstadt, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Reuter", 
        "givenName": "Klaus", 
        "id": "sg:person.015666404435.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015666404435.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0167-5060(08)70325-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046123683"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1991-09", 
    "datePublishedReg": "1991-09-01", 
    "description": "We present a unifying theoretical and algorithmic approach to the problems to determine all closed sets of a closure operator, to do this up to isomorphism, and to determine the elements of certain ideals of a power set. This will be done by generalizing the concept of closure operators using the interplay of several orders of a power set.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf00383449", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136683", 
        "issn": [
          "0167-8094", 
          "1572-9273"
        ], 
        "name": "Order", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Finding all closed sets: A general approach", 
    "pagination": "283-290", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "632e40b49c6f277a34f388a9c8b390b20891c48302d7914e34ef5083a2f9f83f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00383449"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020815872"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00383449", 
      "https://app.dimensions.ai/details/publication/pub.1020815872"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130794_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF00383449"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00383449'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00383449'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00383449'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00383449'


 

This table displays all metadata directly associated to this object as RDF triples.

71 TRIPLES      21 PREDICATES      28 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00383449 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N629494678f42442ba937d58ba4c73305
4 schema:citation https://doi.org/10.1016/s0167-5060(08)70325-x
5 schema:datePublished 1991-09
6 schema:datePublishedReg 1991-09-01
7 schema:description We present a unifying theoretical and algorithmic approach to the problems to determine all closed sets of a closure operator, to do this up to isomorphism, and to determine the elements of certain ideals of a power set. This will be done by generalizing the concept of closure operators using the interplay of several orders of a power set.
8 schema:genre research_article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nadeac979b45a4e4f9b9ce2f17cb5f3fe
12 Nf01781820ce144f2a7b67a066f22c89b
13 sg:journal.1136683
14 schema:name Finding all closed sets: A general approach
15 schema:pagination 283-290
16 schema:productId N2eb58c2be9fc4a2dafe479afde50a40c
17 N7fe04aa323a14cfbb7538047d4390d95
18 Nda0537f85cbe412da4ba4a436901d079
19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020815872
20 https://doi.org/10.1007/bf00383449
21 schema:sdDatePublished 2019-04-11T13:49
22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
23 schema:sdPublisher N698ff9c16fe3403ba1e02d37cdefa67a
24 schema:url http://link.springer.com/10.1007/BF00383449
25 sgo:license sg:explorer/license/
26 sgo:sdDataset articles
27 rdf:type schema:ScholarlyArticle
28 N2eb58c2be9fc4a2dafe479afde50a40c schema:name doi
29 schema:value 10.1007/bf00383449
30 rdf:type schema:PropertyValue
31 N629494678f42442ba937d58ba4c73305 rdf:first sg:person.010666171445.92
32 rdf:rest N7a90e91da57e4dc0832b9434cf6076b9
33 N698ff9c16fe3403ba1e02d37cdefa67a schema:name Springer Nature - SN SciGraph project
34 rdf:type schema:Organization
35 N7a90e91da57e4dc0832b9434cf6076b9 rdf:first sg:person.015666404435.17
36 rdf:rest rdf:nil
37 N7fe04aa323a14cfbb7538047d4390d95 schema:name dimensions_id
38 schema:value pub.1020815872
39 rdf:type schema:PropertyValue
40 Nadeac979b45a4e4f9b9ce2f17cb5f3fe schema:issueNumber 3
41 rdf:type schema:PublicationIssue
42 Nda0537f85cbe412da4ba4a436901d079 schema:name readcube_id
43 schema:value 632e40b49c6f277a34f388a9c8b390b20891c48302d7914e34ef5083a2f9f83f
44 rdf:type schema:PropertyValue
45 Nf01781820ce144f2a7b67a066f22c89b schema:volumeNumber 8
46 rdf:type schema:PublicationVolume
47 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
48 schema:name Mathematical Sciences
49 rdf:type schema:DefinedTerm
50 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
51 schema:name Pure Mathematics
52 rdf:type schema:DefinedTerm
53 sg:journal.1136683 schema:issn 0167-8094
54 1572-9273
55 schema:name Order
56 rdf:type schema:Periodical
57 sg:person.010666171445.92 schema:affiliation https://www.grid.ac/institutes/grid.6546.1
58 schema:familyName Ganter
59 schema:givenName Bernhard
60 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010666171445.92
61 rdf:type schema:Person
62 sg:person.015666404435.17 schema:affiliation https://www.grid.ac/institutes/grid.6546.1
63 schema:familyName Reuter
64 schema:givenName Klaus
65 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015666404435.17
66 rdf:type schema:Person
67 https://doi.org/10.1016/s0167-5060(08)70325-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1046123683
68 rdf:type schema:CreativeWork
69 https://www.grid.ac/institutes/grid.6546.1 schema:alternateName Technical University of Darmstadt
70 schema:name AG1, FB4, Technische Hochschule Darmstadt, D-6100, Darmstadt, Germany
71 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...