Invariant helical subspaces for the Navier-Stokes equations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1990-09

AUTHORS

A. Mahalov, E. S. Titi, S. Leibovich

ABSTRACT

Three-dimensional solutions with helical symmetry are shown to form an invariant subspace for the Navier-Stokes equations. Uniqueness of weak helical solutions in the sense of Leray is proved, and these weak solutions are shown to be regular (strong) solutions existing for arbitrary time t. The global universal attractor for the infinite-dimensional dynamical system generated by the corresponding semi-group of helical flows is shown to be compact and finite-dimensional. The Hausdorff and fractal dimensions of the global attractors are estimated in terms of the governing physical parameters and in terms of the helical parameters for several problems in the class, with the most detailed results obtained for rotating Hagen-Poiseuille (pipe) flow. In this case, the dimension, either Hausdorff or fractal, up to an absolute constant is bounded from above by , where α is the axial wavenumber, n is the azimuthal wavenumber and Re is the Reynolds number based on the radius of the pipe. These upper bounds are independent of the rotation rate. More... »

PAGES

193-222

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00381234

DOI

http://dx.doi.org/10.1007/bf00381234

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015352543


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Cornell University", 
          "id": "https://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "Center for Applied Mathematics, Cornell University, Ithaca, New York", 
            "Department of Mathematics, University of California, California, Irvine", 
            "Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mahalov", 
        "givenName": "A.", 
        "id": "sg:person.0650637703.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650637703.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cornell University", 
          "id": "https://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "Center for Applied Mathematics, Cornell University, Ithaca, New York", 
            "Department of Mathematics, University of California, California, Irvine", 
            "Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Titi", 
        "givenName": "E. S.", 
        "id": "sg:person.0774550114.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774550114.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cornell University", 
          "id": "https://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "Center for Applied Mathematics, Cornell University, Ithaca, New York", 
            "Department of Mathematics, University of California, California, Irvine", 
            "Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leibovich", 
        "givenName": "S.", 
        "id": "sg:person.0661223350.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661223350.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/03605308408820362", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005278995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(90)90046-r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006982182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(90)90046-r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006982182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-0396(88)90110-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019202955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0089647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021101449", 
          "https://doi.org/10.1007/bfb0089647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0089647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021101449", 
          "https://doi.org/10.1007/bfb0089647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03605308408820363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025977389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-247x(90)90061-j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029378690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160380102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035753465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160380102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035753465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(88)90295-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044691346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(88)90295-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044691346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112088001193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053894749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112081002012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053911012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112072000552", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054017381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112072000552", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054017381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112072000552", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054017381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2314843", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069882128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/m2an/1988220100931", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083426942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-96854-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109711461", 
          "https://doi.org/10.1007/978-3-642-96854-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-96854-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109711461", 
          "https://doi.org/10.1007/978-3-642-96854-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1990-09", 
    "datePublishedReg": "1990-09-01", 
    "description": "Three-dimensional solutions with helical symmetry are shown to form an invariant subspace for the Navier-Stokes equations. Uniqueness of weak helical solutions in the sense of Leray is proved, and these weak solutions are shown to be regular (strong) solutions existing for arbitrary time t. The global universal attractor for the infinite-dimensional dynamical system generated by the corresponding semi-group of helical flows is shown to be compact and finite-dimensional. The Hausdorff and fractal dimensions of the global attractors are estimated in terms of the governing physical parameters and in terms of the helical parameters for several problems in the class, with the most detailed results obtained for rotating Hagen-Poiseuille (pipe) flow. In this case, the dimension, either Hausdorff or fractal, up to an absolute constant is bounded from above by , where \u03b1 is the axial wavenumber, n is the azimuthal wavenumber and Re is the Reynolds number based on the radius of the pipe. These upper bounds are independent of the rotation rate.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf00381234", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1047617", 
        "issn": [
          "0003-9527", 
          "1432-0673"
        ], 
        "name": "Archive for Rational Mechanics and Analysis", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "112"
      }
    ], 
    "name": "Invariant helical subspaces for the Navier-Stokes equations", 
    "pagination": "193-222", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4926297a4aa7a8186929f63aebe22910f34ab02e55799729a99f3f39452a0533"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00381234"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015352543"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00381234", 
      "https://app.dimensions.ai/details/publication/pub.1015352543"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130830_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF00381234"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00381234'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00381234'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00381234'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00381234'


 

This table displays all metadata directly associated to this object as RDF triples.

121 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00381234 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N16ebdcaf7ae14400a81dc91df297f24d
4 schema:citation sg:pub.10.1007/978-3-642-96854-9
5 sg:pub.10.1007/bfb0089647
6 https://doi.org/10.1002/cpa.3160380102
7 https://doi.org/10.1016/0022-0396(88)90110-6
8 https://doi.org/10.1016/0022-247x(90)90061-j
9 https://doi.org/10.1016/0167-2789(90)90046-r
10 https://doi.org/10.1016/0375-9601(88)90295-2
11 https://doi.org/10.1017/s0022112072000552
12 https://doi.org/10.1017/s0022112081002012
13 https://doi.org/10.1017/s0022112088001193
14 https://doi.org/10.1051/m2an/1988220100931
15 https://doi.org/10.1080/03605308408820362
16 https://doi.org/10.1080/03605308408820363
17 https://doi.org/10.2307/2314843
18 schema:datePublished 1990-09
19 schema:datePublishedReg 1990-09-01
20 schema:description Three-dimensional solutions with helical symmetry are shown to form an invariant subspace for the Navier-Stokes equations. Uniqueness of weak helical solutions in the sense of Leray is proved, and these weak solutions are shown to be regular (strong) solutions existing for arbitrary time t. The global universal attractor for the infinite-dimensional dynamical system generated by the corresponding semi-group of helical flows is shown to be compact and finite-dimensional. The Hausdorff and fractal dimensions of the global attractors are estimated in terms of the governing physical parameters and in terms of the helical parameters for several problems in the class, with the most detailed results obtained for rotating Hagen-Poiseuille (pipe) flow. In this case, the dimension, either Hausdorff or fractal, up to an absolute constant is bounded from above by , where α is the axial wavenumber, n is the azimuthal wavenumber and Re is the Reynolds number based on the radius of the pipe. These upper bounds are independent of the rotation rate.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf N17cddd04bebc478daa5d62f1a41c1125
25 Ne6f04d3996ed43398775d1efe98adc6d
26 sg:journal.1047617
27 schema:name Invariant helical subspaces for the Navier-Stokes equations
28 schema:pagination 193-222
29 schema:productId N03e6a4e91c6f42a0abfac19e5cecde07
30 N3b076adbb84e4b8bb13173d5e79300dd
31 Nb54d9f829b2445c6815eb23de0948004
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015352543
33 https://doi.org/10.1007/bf00381234
34 schema:sdDatePublished 2019-04-11T14:01
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher Na8787298beb842f88bcde3a7d608d545
37 schema:url http://link.springer.com/10.1007/BF00381234
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N03e6a4e91c6f42a0abfac19e5cecde07 schema:name dimensions_id
42 schema:value pub.1015352543
43 rdf:type schema:PropertyValue
44 N16ebdcaf7ae14400a81dc91df297f24d rdf:first sg:person.0650637703.30
45 rdf:rest N181b8be0e6c04f1d87e22161903ebc5f
46 N17cddd04bebc478daa5d62f1a41c1125 schema:volumeNumber 112
47 rdf:type schema:PublicationVolume
48 N181b8be0e6c04f1d87e22161903ebc5f rdf:first sg:person.0774550114.65
49 rdf:rest N713c551d68a243d399229bd0f0b5ab53
50 N3b076adbb84e4b8bb13173d5e79300dd schema:name doi
51 schema:value 10.1007/bf00381234
52 rdf:type schema:PropertyValue
53 N713c551d68a243d399229bd0f0b5ab53 rdf:first sg:person.0661223350.30
54 rdf:rest rdf:nil
55 Na8787298beb842f88bcde3a7d608d545 schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 Nb54d9f829b2445c6815eb23de0948004 schema:name readcube_id
58 schema:value 4926297a4aa7a8186929f63aebe22910f34ab02e55799729a99f3f39452a0533
59 rdf:type schema:PropertyValue
60 Ne6f04d3996ed43398775d1efe98adc6d schema:issueNumber 3
61 rdf:type schema:PublicationIssue
62 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
63 schema:name Mathematical Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
66 schema:name Pure Mathematics
67 rdf:type schema:DefinedTerm
68 sg:journal.1047617 schema:issn 0003-9527
69 1432-0673
70 schema:name Archive for Rational Mechanics and Analysis
71 rdf:type schema:Periodical
72 sg:person.0650637703.30 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
73 schema:familyName Mahalov
74 schema:givenName A.
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650637703.30
76 rdf:type schema:Person
77 sg:person.0661223350.30 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
78 schema:familyName Leibovich
79 schema:givenName S.
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661223350.30
81 rdf:type schema:Person
82 sg:person.0774550114.65 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
83 schema:familyName Titi
84 schema:givenName E. S.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774550114.65
86 rdf:type schema:Person
87 sg:pub.10.1007/978-3-642-96854-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109711461
88 https://doi.org/10.1007/978-3-642-96854-9
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/bfb0089647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021101449
91 https://doi.org/10.1007/bfb0089647
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1002/cpa.3160380102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035753465
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/0022-0396(88)90110-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019202955
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/0022-247x(90)90061-j schema:sameAs https://app.dimensions.ai/details/publication/pub.1029378690
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/0167-2789(90)90046-r schema:sameAs https://app.dimensions.ai/details/publication/pub.1006982182
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/0375-9601(88)90295-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044691346
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1017/s0022112072000552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054017381
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1017/s0022112081002012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053911012
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1017/s0022112088001193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053894749
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1051/m2an/1988220100931 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083426942
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1080/03605308408820362 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005278995
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1080/03605308408820363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025977389
114 rdf:type schema:CreativeWork
115 https://doi.org/10.2307/2314843 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069882128
116 rdf:type schema:CreativeWork
117 https://www.grid.ac/institutes/grid.5386.8 schema:alternateName Cornell University
118 schema:name Center for Applied Mathematics, Cornell University, Ithaca, New York
119 Department of Mathematics, University of California, California, Irvine
120 Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York
121 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...