Invariant helical subspaces for the Navier-Stokes equations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1990-09

AUTHORS

A. Mahalov, E. S. Titi, S. Leibovich

ABSTRACT

Three-dimensional solutions with helical symmetry are shown to form an invariant subspace for the Navier-Stokes equations. Uniqueness of weak helical solutions in the sense of Leray is proved, and these weak solutions are shown to be regular (strong) solutions existing for arbitrary time t. The global universal attractor for the infinite-dimensional dynamical system generated by the corresponding semi-group of helical flows is shown to be compact and finite-dimensional. The Hausdorff and fractal dimensions of the global attractors are estimated in terms of the governing physical parameters and in terms of the helical parameters for several problems in the class, with the most detailed results obtained for rotating Hagen-Poiseuille (pipe) flow. In this case, the dimension, either Hausdorff or fractal, up to an absolute constant is bounded from above by , where α is the axial wavenumber, n is the azimuthal wavenumber and Re is the Reynolds number based on the radius of the pipe. These upper bounds are independent of the rotation rate. More... »

PAGES

193-222

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00381234

DOI

http://dx.doi.org/10.1007/bf00381234

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015352543


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Cornell University", 
          "id": "https://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "Center for Applied Mathematics, Cornell University, Ithaca, New York", 
            "Department of Mathematics, University of California, California, Irvine", 
            "Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mahalov", 
        "givenName": "A.", 
        "id": "sg:person.0650637703.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650637703.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cornell University", 
          "id": "https://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "Center for Applied Mathematics, Cornell University, Ithaca, New York", 
            "Department of Mathematics, University of California, California, Irvine", 
            "Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Titi", 
        "givenName": "E. S.", 
        "id": "sg:person.0774550114.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774550114.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cornell University", 
          "id": "https://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "Center for Applied Mathematics, Cornell University, Ithaca, New York", 
            "Department of Mathematics, University of California, California, Irvine", 
            "Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leibovich", 
        "givenName": "S.", 
        "id": "sg:person.0661223350.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661223350.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/03605308408820362", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005278995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(90)90046-r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006982182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-2789(90)90046-r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006982182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-0396(88)90110-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019202955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0089647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021101449", 
          "https://doi.org/10.1007/bfb0089647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0089647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021101449", 
          "https://doi.org/10.1007/bfb0089647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/03605308408820363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025977389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-247x(90)90061-j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029378690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160380102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035753465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160380102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035753465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(88)90295-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044691346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(88)90295-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044691346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112088001193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053894749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112081002012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053911012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112072000552", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054017381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112072000552", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054017381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112072000552", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054017381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2314843", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069882128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/m2an/1988220100931", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083426942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-96854-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109711461", 
          "https://doi.org/10.1007/978-3-642-96854-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-96854-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109711461", 
          "https://doi.org/10.1007/978-3-642-96854-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1990-09", 
    "datePublishedReg": "1990-09-01", 
    "description": "Three-dimensional solutions with helical symmetry are shown to form an invariant subspace for the Navier-Stokes equations. Uniqueness of weak helical solutions in the sense of Leray is proved, and these weak solutions are shown to be regular (strong) solutions existing for arbitrary time t. The global universal attractor for the infinite-dimensional dynamical system generated by the corresponding semi-group of helical flows is shown to be compact and finite-dimensional. The Hausdorff and fractal dimensions of the global attractors are estimated in terms of the governing physical parameters and in terms of the helical parameters for several problems in the class, with the most detailed results obtained for rotating Hagen-Poiseuille (pipe) flow. In this case, the dimension, either Hausdorff or fractal, up to an absolute constant is bounded from above by , where \u03b1 is the axial wavenumber, n is the azimuthal wavenumber and Re is the Reynolds number based on the radius of the pipe. These upper bounds are independent of the rotation rate.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf00381234", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1047617", 
        "issn": [
          "0003-9527", 
          "1432-0673"
        ], 
        "name": "Archive for Rational Mechanics and Analysis", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "112"
      }
    ], 
    "name": "Invariant helical subspaces for the Navier-Stokes equations", 
    "pagination": "193-222", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4926297a4aa7a8186929f63aebe22910f34ab02e55799729a99f3f39452a0533"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00381234"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015352543"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00381234", 
      "https://app.dimensions.ai/details/publication/pub.1015352543"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130830_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF00381234"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00381234'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00381234'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00381234'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00381234'


 

This table displays all metadata directly associated to this object as RDF triples.

121 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00381234 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N3edc57c5e15848dea3bb83da9c5934d5
4 schema:citation sg:pub.10.1007/978-3-642-96854-9
5 sg:pub.10.1007/bfb0089647
6 https://doi.org/10.1002/cpa.3160380102
7 https://doi.org/10.1016/0022-0396(88)90110-6
8 https://doi.org/10.1016/0022-247x(90)90061-j
9 https://doi.org/10.1016/0167-2789(90)90046-r
10 https://doi.org/10.1016/0375-9601(88)90295-2
11 https://doi.org/10.1017/s0022112072000552
12 https://doi.org/10.1017/s0022112081002012
13 https://doi.org/10.1017/s0022112088001193
14 https://doi.org/10.1051/m2an/1988220100931
15 https://doi.org/10.1080/03605308408820362
16 https://doi.org/10.1080/03605308408820363
17 https://doi.org/10.2307/2314843
18 schema:datePublished 1990-09
19 schema:datePublishedReg 1990-09-01
20 schema:description Three-dimensional solutions with helical symmetry are shown to form an invariant subspace for the Navier-Stokes equations. Uniqueness of weak helical solutions in the sense of Leray is proved, and these weak solutions are shown to be regular (strong) solutions existing for arbitrary time t. The global universal attractor for the infinite-dimensional dynamical system generated by the corresponding semi-group of helical flows is shown to be compact and finite-dimensional. The Hausdorff and fractal dimensions of the global attractors are estimated in terms of the governing physical parameters and in terms of the helical parameters for several problems in the class, with the most detailed results obtained for rotating Hagen-Poiseuille (pipe) flow. In this case, the dimension, either Hausdorff or fractal, up to an absolute constant is bounded from above by , where α is the axial wavenumber, n is the azimuthal wavenumber and Re is the Reynolds number based on the radius of the pipe. These upper bounds are independent of the rotation rate.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf N18805c297f574d718a3742f8525a0549
25 N7d258d0bcfe146709852be84c8809252
26 sg:journal.1047617
27 schema:name Invariant helical subspaces for the Navier-Stokes equations
28 schema:pagination 193-222
29 schema:productId N4de26563d71d48dc851505ce8644d689
30 N4f7ac9ea0a604a80a96c2c56e3d4e5d7
31 N5b0d966815f04d64a1183d93a18fca27
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015352543
33 https://doi.org/10.1007/bf00381234
34 schema:sdDatePublished 2019-04-11T14:01
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N5780921911e94e2c95776c325bdc8aeb
37 schema:url http://link.springer.com/10.1007/BF00381234
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N18805c297f574d718a3742f8525a0549 schema:issueNumber 3
42 rdf:type schema:PublicationIssue
43 N3edc57c5e15848dea3bb83da9c5934d5 rdf:first sg:person.0650637703.30
44 rdf:rest N6c1628dbbdfa4f6aa3eb9a540f2f36d5
45 N4de26563d71d48dc851505ce8644d689 schema:name doi
46 schema:value 10.1007/bf00381234
47 rdf:type schema:PropertyValue
48 N4f7ac9ea0a604a80a96c2c56e3d4e5d7 schema:name readcube_id
49 schema:value 4926297a4aa7a8186929f63aebe22910f34ab02e55799729a99f3f39452a0533
50 rdf:type schema:PropertyValue
51 N5780921911e94e2c95776c325bdc8aeb schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 N5b0d966815f04d64a1183d93a18fca27 schema:name dimensions_id
54 schema:value pub.1015352543
55 rdf:type schema:PropertyValue
56 N6c1628dbbdfa4f6aa3eb9a540f2f36d5 rdf:first sg:person.0774550114.65
57 rdf:rest Nc016919a09114d5cbae3b86cdaddc595
58 N7d258d0bcfe146709852be84c8809252 schema:volumeNumber 112
59 rdf:type schema:PublicationVolume
60 Nc016919a09114d5cbae3b86cdaddc595 rdf:first sg:person.0661223350.30
61 rdf:rest rdf:nil
62 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
63 schema:name Mathematical Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
66 schema:name Pure Mathematics
67 rdf:type schema:DefinedTerm
68 sg:journal.1047617 schema:issn 0003-9527
69 1432-0673
70 schema:name Archive for Rational Mechanics and Analysis
71 rdf:type schema:Periodical
72 sg:person.0650637703.30 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
73 schema:familyName Mahalov
74 schema:givenName A.
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650637703.30
76 rdf:type schema:Person
77 sg:person.0661223350.30 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
78 schema:familyName Leibovich
79 schema:givenName S.
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661223350.30
81 rdf:type schema:Person
82 sg:person.0774550114.65 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
83 schema:familyName Titi
84 schema:givenName E. S.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774550114.65
86 rdf:type schema:Person
87 sg:pub.10.1007/978-3-642-96854-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109711461
88 https://doi.org/10.1007/978-3-642-96854-9
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/bfb0089647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021101449
91 https://doi.org/10.1007/bfb0089647
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1002/cpa.3160380102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035753465
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/0022-0396(88)90110-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019202955
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/0022-247x(90)90061-j schema:sameAs https://app.dimensions.ai/details/publication/pub.1029378690
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/0167-2789(90)90046-r schema:sameAs https://app.dimensions.ai/details/publication/pub.1006982182
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/0375-9601(88)90295-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044691346
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1017/s0022112072000552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054017381
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1017/s0022112081002012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053911012
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1017/s0022112088001193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053894749
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1051/m2an/1988220100931 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083426942
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1080/03605308408820362 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005278995
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1080/03605308408820363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025977389
114 rdf:type schema:CreativeWork
115 https://doi.org/10.2307/2314843 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069882128
116 rdf:type schema:CreativeWork
117 https://www.grid.ac/institutes/grid.5386.8 schema:alternateName Cornell University
118 schema:name Center for Applied Mathematics, Cornell University, Ithaca, New York
119 Department of Mathematics, University of California, California, Irvine
120 Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York
121 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...