Modeling the alcoholic fermentation of xylose by Pichia stipitis using a qualitative reasoning approach View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1994-03

AUTHORS

F. Guerrin, J. -P. Delgenès, R. Moletta

ABSTRACT

Qualitative Reasoning is a set of Artificial Intelligence theories, methods, and techniques that provide an answer to modeling problems in domains in which one can have a clear notion of how a system is functioning without being able to express it as classical mathematical equations, and where is posed the problem of using jointly quantitative and qualitative data, as well as processing a big amount of complex knowledge. SIMAO (‘a System to Interpret Measurements And Observations’) is an attempt to deal with such problems. Although primarily devised for heterogeneous data interpretation in hydroecology, it was thought possible to use SIMAO in a wider context, like biotechnological processes. Starting from specific problems posed by a batch fermentation, the D-xylose conversion into ethanol by the yeast Pichia stipitis, this paper describes how was built and used a SIMAO model aimed at predicting the fermentation issue from initial conditions, i.e. set-points values and substrate concentration. More... »

PAGES

115-122

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00369466

DOI

http://dx.doi.org/10.1007/bf00369466

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002894676


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Biometrics and Artificial Intelligence Station, INRA (Institut National de la Recherche Agronomique), BP 27-31326, Castanet-Tolosan Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guerrin", 
        "givenName": "F.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Biotechnological Laboratory for Food Industry Environment, INRA, Bd du G\u00e9n\u00e9ral De Gaulle, 11100, Narbonne, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Delgen\u00e8s", 
        "givenName": "J. -P.", 
        "id": "sg:person.011220121075.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011220121075.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Biotechnological Laboratory for Food Industry Environment, INRA, Bd du G\u00e9n\u00e9ral De Gaulle, 11100, Narbonne, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moletta", 
        "givenName": "R.", 
        "id": "sg:person.01162322134.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162322134.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01982895", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001817019", 
          "https://doi.org/10.1007/bf01982895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01982895", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001817019", 
          "https://doi.org/10.1007/bf01982895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0385-6380(88)90008-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002511386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0385-6380(88)90008-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002511386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-11018-6_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006839114", 
          "https://doi.org/10.1007/3-540-11018-6_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00500493", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009162697", 
          "https://doi.org/10.1007/bf00500493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00500493", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009162697", 
          "https://doi.org/10.1007/bf00500493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0141-0229(88)90001-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016628925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0141-0229(88)90001-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016628925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01078656", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025347316", 
          "https://doi.org/10.1007/bf01078656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01078656", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025347316", 
          "https://doi.org/10.1007/bf01078656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0141-0229(86)90136-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026743846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0141-0229(86)90136-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026743846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1574-6968.1986.tb01194.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036791738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1574-6968.1986.tb01194.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036791738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-3800(91)90177-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038361764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-3800(91)90177-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038361764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/00221287-106-2-277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060362893"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1994-03", 
    "datePublishedReg": "1994-03-01", 
    "description": "Qualitative Reasoning is a set of Artificial Intelligence theories, methods, and techniques that provide an answer to modeling problems in domains in which one can have a clear notion of how a system is functioning without being able to express it as classical mathematical equations, and where is posed the problem of using jointly quantitative and qualitative data, as well as processing a big amount of complex knowledge. SIMAO (\u2018a System to Interpret Measurements And Observations\u2019) is an attempt to deal with such problems. Although primarily devised for heterogeneous data interpretation in hydroecology, it was thought possible to use SIMAO in a wider context, like biotechnological processes. Starting from specific problems posed by a batch fermentation, the D-xylose conversion into ethanol by the yeast Pichia stipitis, this paper describes how was built and used a SIMAO model aimed at predicting the fermentation issue from initial conditions, i.e. set-points values and substrate concentration.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf00369466", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297453", 
        "issn": [
          "1615-7591", 
          "1615-7605"
        ], 
        "name": "Bioprocess and Biosystems Engineering", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "10"
      }
    ], 
    "name": "Modeling the alcoholic fermentation of xylose by Pichia stipitis using a qualitative reasoning approach", 
    "pagination": "115-122", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00369466"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0dc91a19e10891b20810be5c873d3c27a4120cd9f26d0998e8ccd5d0b3b3af1f"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002894676"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00369466", 
      "https://app.dimensions.ai/details/publication/pub.1002894676"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T08:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000374_0000000374/records_119747_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF00369466"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00369466'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00369466'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00369466'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00369466'


 

This table displays all metadata directly associated to this object as RDF triples.

111 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00369466 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N06161088ad7e4243aca84a81562e64bc
4 schema:citation sg:pub.10.1007/3-540-11018-6_4
5 sg:pub.10.1007/bf00500493
6 sg:pub.10.1007/bf01078656
7 sg:pub.10.1007/bf01982895
8 https://doi.org/10.1016/0141-0229(86)90136-5
9 https://doi.org/10.1016/0141-0229(88)90001-4
10 https://doi.org/10.1016/0304-3800(91)90177-3
11 https://doi.org/10.1016/0385-6380(88)90008-8
12 https://doi.org/10.1099/00221287-106-2-277
13 https://doi.org/10.1111/j.1574-6968.1986.tb01194.x
14 schema:datePublished 1994-03
15 schema:datePublishedReg 1994-03-01
16 schema:description Qualitative Reasoning is a set of Artificial Intelligence theories, methods, and techniques that provide an answer to modeling problems in domains in which one can have a clear notion of how a system is functioning without being able to express it as classical mathematical equations, and where is posed the problem of using jointly quantitative and qualitative data, as well as processing a big amount of complex knowledge. SIMAO (‘a System to Interpret Measurements And Observations’) is an attempt to deal with such problems. Although primarily devised for heterogeneous data interpretation in hydroecology, it was thought possible to use SIMAO in a wider context, like biotechnological processes. Starting from specific problems posed by a batch fermentation, the D-xylose conversion into ethanol by the yeast Pichia stipitis, this paper describes how was built and used a SIMAO model aimed at predicting the fermentation issue from initial conditions, i.e. set-points values and substrate concentration.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N48037ceaf8e44e48a1104064f236c0a5
21 N912cc2f30c954aaeb65b4b2b58600211
22 sg:journal.1297453
23 schema:name Modeling the alcoholic fermentation of xylose by Pichia stipitis using a qualitative reasoning approach
24 schema:pagination 115-122
25 schema:productId N19bb53bfd68349038a278952d23cdf0d
26 N51f7ab8530fe4af08b6e6eddf618c0e4
27 Nc163317113954f1c8a50bcfbdd782f42
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002894676
29 https://doi.org/10.1007/bf00369466
30 schema:sdDatePublished 2019-04-15T08:52
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N142e296f42ad4c7eb759726f68d6deb6
33 schema:url http://link.springer.com/10.1007/BF00369466
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N06161088ad7e4243aca84a81562e64bc rdf:first N88945cdea4f64bd98e0527e3824b6609
38 rdf:rest Nb6be5ebb0ffa40ce8168e6f72123dd63
39 N142e296f42ad4c7eb759726f68d6deb6 schema:name Springer Nature - SN SciGraph project
40 rdf:type schema:Organization
41 N19bb53bfd68349038a278952d23cdf0d schema:name dimensions_id
42 schema:value pub.1002894676
43 rdf:type schema:PropertyValue
44 N3798dbd74d1e4f23ad455457eda2c917 schema:name Biometrics and Artificial Intelligence Station, INRA (Institut National de la Recherche Agronomique), BP 27-31326, Castanet-Tolosan Cedex, France
45 rdf:type schema:Organization
46 N48037ceaf8e44e48a1104064f236c0a5 schema:issueNumber 3
47 rdf:type schema:PublicationIssue
48 N51f7ab8530fe4af08b6e6eddf618c0e4 schema:name doi
49 schema:value 10.1007/bf00369466
50 rdf:type schema:PropertyValue
51 N88945cdea4f64bd98e0527e3824b6609 schema:affiliation N3798dbd74d1e4f23ad455457eda2c917
52 schema:familyName Guerrin
53 schema:givenName F.
54 rdf:type schema:Person
55 N912cc2f30c954aaeb65b4b2b58600211 schema:volumeNumber 10
56 rdf:type schema:PublicationVolume
57 Nb6be5ebb0ffa40ce8168e6f72123dd63 rdf:first sg:person.011220121075.12
58 rdf:rest Ne52af9eaf88e491083b896efb05f773e
59 Nc163317113954f1c8a50bcfbdd782f42 schema:name readcube_id
60 schema:value 0dc91a19e10891b20810be5c873d3c27a4120cd9f26d0998e8ccd5d0b3b3af1f
61 rdf:type schema:PropertyValue
62 Nc5ef671cf853459490e42b39ebb8afb5 schema:name Biotechnological Laboratory for Food Industry Environment, INRA, Bd du Général De Gaulle, 11100, Narbonne, France
63 rdf:type schema:Organization
64 Nd55739d82d554903b9133f5f51abe2f9 schema:name Biotechnological Laboratory for Food Industry Environment, INRA, Bd du Général De Gaulle, 11100, Narbonne, France
65 rdf:type schema:Organization
66 Ne52af9eaf88e491083b896efb05f773e rdf:first sg:person.01162322134.15
67 rdf:rest rdf:nil
68 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
69 schema:name Information and Computing Sciences
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
72 schema:name Artificial Intelligence and Image Processing
73 rdf:type schema:DefinedTerm
74 sg:journal.1297453 schema:issn 1615-7591
75 1615-7605
76 schema:name Bioprocess and Biosystems Engineering
77 rdf:type schema:Periodical
78 sg:person.011220121075.12 schema:affiliation Nd55739d82d554903b9133f5f51abe2f9
79 schema:familyName Delgenès
80 schema:givenName J. -P.
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011220121075.12
82 rdf:type schema:Person
83 sg:person.01162322134.15 schema:affiliation Nc5ef671cf853459490e42b39ebb8afb5
84 schema:familyName Moletta
85 schema:givenName R.
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162322134.15
87 rdf:type schema:Person
88 sg:pub.10.1007/3-540-11018-6_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006839114
89 https://doi.org/10.1007/3-540-11018-6_4
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/bf00500493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009162697
92 https://doi.org/10.1007/bf00500493
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/bf01078656 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025347316
95 https://doi.org/10.1007/bf01078656
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/bf01982895 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001817019
98 https://doi.org/10.1007/bf01982895
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/0141-0229(86)90136-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026743846
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/0141-0229(88)90001-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016628925
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/0304-3800(91)90177-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038361764
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/0385-6380(88)90008-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002511386
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1099/00221287-106-2-277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060362893
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1111/j.1574-6968.1986.tb01194.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036791738
111 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...