Solidification morphology and semisolid deformation in the superalloy Rene 108 View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1994-07

AUTHORS

C. S. Lin, J. A. Sekhar

ABSTRACT

A high-temperature nickel-base superalloy (Rene 108) was solidified at various cooling rates. The morphology of the equiaxed microstructure and the mechanism for intrinsic microporosity formation were correlated to the processing parameters. A special Gleeble testing procedure (developed previously — where the samples were quickly raised to a predetermined temperature in the semisolid zone and fractured) was used for the measurement of the fracture data. The upper coherent temperature was noted to be a function of the solidification variables. The amount of strain accommodation and the hot-tearing resistance was found to be influenced by the solidification microstructure. The hot ductility, the semisolid strength, and the corresponding microstructural changes are examined and discussed. Fracture maps which include the temperature, transverse-fracture stress and cooling rate during solidification \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(T - \sigma _T - \dot T)$$ \end{document} for the equiaxed solidified microstructures are presented. A castability map was created from the fracture data. More... »

PAGES

3637-3642

References to SciGraph publications

  • 1991-01. Solidification microporosity in directionally solidified multicomponent nickel aluminide in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1974-10. Solidification processing in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 1993-07. Semi-solid deformation in multi-component nickel aluminide in JOURNAL OF MATERIALS SCIENCE
  • 1993-01-01. Semi-solid deformation in multi-component nickel aluminide in JOURNAL OF MATERIALS SCIENCE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf00357329

    DOI

    http://dx.doi.org/10.1007/bf00357329

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1016113650


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Materials Science and Engineering, International Center for Micropyretics, University of Cincinnati, 45221-0012, Cincinnati, OH, USA", 
              "id": "http://www.grid.ac/institutes/grid.24827.3b", 
              "name": [
                "Department of Materials Science and Engineering, International Center for Micropyretics, University of Cincinnati, 45221-0012, Cincinnati, OH, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lin", 
            "givenName": "C. S.", 
            "id": "sg:person.010363230501.68", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010363230501.68"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Materials Science and Engineering, International Center for Micropyretics, University of Cincinnati, 45221-0012, Cincinnati, OH, USA", 
              "id": "http://www.grid.ac/institutes/grid.24827.3b", 
              "name": [
                "Department of Materials Science and Engineering, International Center for Micropyretics, University of Cincinnati, 45221-0012, Cincinnati, OH, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sekhar", 
            "givenName": "J. A.", 
            "id": "sg:person.016661564161.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016661564161.49"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00353196", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032762739", 
              "https://doi.org/10.1007/bf00353196"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01159840", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039721304", 
              "https://doi.org/10.1007/bf01159840"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf03350964", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029792246", 
              "https://doi.org/10.1007/bf03350964"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02643923", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003405804", 
              "https://doi.org/10.1007/bf02643923"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1994-07", 
        "datePublishedReg": "1994-07-01", 
        "description": "A high-temperature nickel-base superalloy (Rene 108) was solidified at various cooling rates. The morphology of the equiaxed microstructure and the mechanism for intrinsic microporosity formation were correlated to the processing parameters. A special Gleeble testing procedure (developed previously \u2014 where the samples were quickly raised to a predetermined temperature in the semisolid zone and fractured) was used for the measurement of the fracture data. The upper coherent temperature was noted to be a function of the solidification variables. The amount of strain accommodation and the hot-tearing resistance was found to be influenced by the solidification microstructure. The hot ductility, the semisolid strength, and the corresponding microstructural changes are examined and discussed. Fracture maps which include the temperature, transverse-fracture stress and cooling rate during solidification \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$(T - \\sigma _T  - \\dot T)$$\n\\end{document} for the equiaxed solidified microstructures are presented. A castability map was created from the fracture data.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf00357329", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1312116", 
            "issn": [
              "0022-2461", 
              "1573-4811"
            ], 
            "name": "Journal of Materials Science", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "14", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "29"
          }
        ], 
        "keywords": [
          "special Gleeble testing procedure", 
          "hot-tearing resistance", 
          "nickel-based superalloy", 
          "fracture data", 
          "castability map", 
          "semisolid deformation", 
          "hot ductility", 
          "corresponding microstructural changes", 
          "equiaxed microstructure", 
          "processing parameters", 
          "solidification microstructure", 
          "solidification variables", 
          "solidification morphology", 
          "microporosity formation", 
          "microstructural changes", 
          "cooling rate", 
          "fracture maps", 
          "microstructure", 
          "strain accommodation", 
          "ductility", 
          "coherent temperature", 
          "superalloy", 
          "temperature", 
          "solidification", 
          "deformation", 
          "morphology", 
          "testing procedures", 
          "strength", 
          "stress", 
          "measurements", 
          "resistance", 
          "parameters", 
          "rate", 
          "maps", 
          "amount", 
          "formation", 
          "data", 
          "procedure", 
          "mechanism", 
          "variables", 
          "changes", 
          "function", 
          "accommodation", 
          "high-temperature nickel-base superalloy", 
          "intrinsic microporosity formation", 
          "Gleeble testing procedure", 
          "upper coherent temperature", 
          "semisolid strength", 
          "transverse-fracture stress", 
          "superalloy Rene 108", 
          "Rene 108"
        ], 
        "name": "Solidification morphology and semisolid deformation in the superalloy Rene 108", 
        "pagination": "3637-3642", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1016113650"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf00357329"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf00357329", 
          "https://app.dimensions.ai/details/publication/pub.1016113650"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:06", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_239.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf00357329"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00357329'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00357329'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00357329'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00357329'


     

    This table displays all metadata directly associated to this object as RDF triples.

    132 TRIPLES      22 PREDICATES      81 URIs      69 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf00357329 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N0082e9aa62914e20a0f650118b556884
    4 schema:citation sg:pub.10.1007/bf00353196
    5 sg:pub.10.1007/bf01159840
    6 sg:pub.10.1007/bf02643923
    7 sg:pub.10.1007/bf03350964
    8 schema:datePublished 1994-07
    9 schema:datePublishedReg 1994-07-01
    10 schema:description A high-temperature nickel-base superalloy (Rene 108) was solidified at various cooling rates. The morphology of the equiaxed microstructure and the mechanism for intrinsic microporosity formation were correlated to the processing parameters. A special Gleeble testing procedure (developed previously — where the samples were quickly raised to a predetermined temperature in the semisolid zone and fractured) was used for the measurement of the fracture data. The upper coherent temperature was noted to be a function of the solidification variables. The amount of strain accommodation and the hot-tearing resistance was found to be influenced by the solidification microstructure. The hot ductility, the semisolid strength, and the corresponding microstructural changes are examined and discussed. Fracture maps which include the temperature, transverse-fracture stress and cooling rate during solidification \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(T - \sigma _T - \dot T)$$ \end{document} for the equiaxed solidified microstructures are presented. A castability map was created from the fracture data.
    11 schema:genre article
    12 schema:inLanguage en
    13 schema:isAccessibleForFree false
    14 schema:isPartOf N3347417b20a746a3a425bbe76894c193
    15 Nb041bdd91ad040bfb5f4d0fbe94324c8
    16 sg:journal.1312116
    17 schema:keywords Gleeble testing procedure
    18 Rene 108
    19 accommodation
    20 amount
    21 castability map
    22 changes
    23 coherent temperature
    24 cooling rate
    25 corresponding microstructural changes
    26 data
    27 deformation
    28 ductility
    29 equiaxed microstructure
    30 formation
    31 fracture data
    32 fracture maps
    33 function
    34 high-temperature nickel-base superalloy
    35 hot ductility
    36 hot-tearing resistance
    37 intrinsic microporosity formation
    38 maps
    39 measurements
    40 mechanism
    41 microporosity formation
    42 microstructural changes
    43 microstructure
    44 morphology
    45 nickel-based superalloy
    46 parameters
    47 procedure
    48 processing parameters
    49 rate
    50 resistance
    51 semisolid deformation
    52 semisolid strength
    53 solidification
    54 solidification microstructure
    55 solidification morphology
    56 solidification variables
    57 special Gleeble testing procedure
    58 strain accommodation
    59 strength
    60 stress
    61 superalloy
    62 superalloy Rene 108
    63 temperature
    64 testing procedures
    65 transverse-fracture stress
    66 upper coherent temperature
    67 variables
    68 schema:name Solidification morphology and semisolid deformation in the superalloy Rene 108
    69 schema:pagination 3637-3642
    70 schema:productId N3a54ce9322b940d59f487de8b8b5889b
    71 N6f559be2d37f4458ad0c1a50ab7d336b
    72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016113650
    73 https://doi.org/10.1007/bf00357329
    74 schema:sdDatePublished 2022-01-01T18:06
    75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    76 schema:sdPublisher Nc5bf329d44c14aacb2e027124f01ce12
    77 schema:url https://doi.org/10.1007/bf00357329
    78 sgo:license sg:explorer/license/
    79 sgo:sdDataset articles
    80 rdf:type schema:ScholarlyArticle
    81 N0082e9aa62914e20a0f650118b556884 rdf:first sg:person.010363230501.68
    82 rdf:rest N064a6c12403141d8b6d44619a3da70e6
    83 N064a6c12403141d8b6d44619a3da70e6 rdf:first sg:person.016661564161.49
    84 rdf:rest rdf:nil
    85 N3347417b20a746a3a425bbe76894c193 schema:volumeNumber 29
    86 rdf:type schema:PublicationVolume
    87 N3a54ce9322b940d59f487de8b8b5889b schema:name dimensions_id
    88 schema:value pub.1016113650
    89 rdf:type schema:PropertyValue
    90 N6f559be2d37f4458ad0c1a50ab7d336b schema:name doi
    91 schema:value 10.1007/bf00357329
    92 rdf:type schema:PropertyValue
    93 Nb041bdd91ad040bfb5f4d0fbe94324c8 schema:issueNumber 14
    94 rdf:type schema:PublicationIssue
    95 Nc5bf329d44c14aacb2e027124f01ce12 schema:name Springer Nature - SN SciGraph project
    96 rdf:type schema:Organization
    97 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    98 schema:name Engineering
    99 rdf:type schema:DefinedTerm
    100 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    101 schema:name Materials Engineering
    102 rdf:type schema:DefinedTerm
    103 sg:journal.1312116 schema:issn 0022-2461
    104 1573-4811
    105 schema:name Journal of Materials Science
    106 schema:publisher Springer Nature
    107 rdf:type schema:Periodical
    108 sg:person.010363230501.68 schema:affiliation grid-institutes:grid.24827.3b
    109 schema:familyName Lin
    110 schema:givenName C. S.
    111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010363230501.68
    112 rdf:type schema:Person
    113 sg:person.016661564161.49 schema:affiliation grid-institutes:grid.24827.3b
    114 schema:familyName Sekhar
    115 schema:givenName J. A.
    116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016661564161.49
    117 rdf:type schema:Person
    118 sg:pub.10.1007/bf00353196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032762739
    119 https://doi.org/10.1007/bf00353196
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1007/bf01159840 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039721304
    122 https://doi.org/10.1007/bf01159840
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1007/bf02643923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003405804
    125 https://doi.org/10.1007/bf02643923
    126 rdf:type schema:CreativeWork
    127 sg:pub.10.1007/bf03350964 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029792246
    128 https://doi.org/10.1007/bf03350964
    129 rdf:type schema:CreativeWork
    130 grid-institutes:grid.24827.3b schema:alternateName Department of Materials Science and Engineering, International Center for Micropyretics, University of Cincinnati, 45221-0012, Cincinnati, OH, USA
    131 schema:name Department of Materials Science and Engineering, International Center for Micropyretics, University of Cincinnati, 45221-0012, Cincinnati, OH, USA
    132 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...