Ontology type: schema:ScholarlyArticle
1994-07
AUTHORS ABSTRACTA high-temperature nickel-base superalloy (Rene 108) was solidified at various cooling rates. The morphology of the equiaxed microstructure and the mechanism for intrinsic microporosity formation were correlated to the processing parameters. A special Gleeble testing procedure (developed previously — where the samples were quickly raised to a predetermined temperature in the semisolid zone and fractured) was used for the measurement of the fracture data. The upper coherent temperature was noted to be a function of the solidification variables. The amount of strain accommodation and the hot-tearing resistance was found to be influenced by the solidification microstructure. The hot ductility, the semisolid strength, and the corresponding microstructural changes are examined and discussed. Fracture maps which include the temperature, transverse-fracture stress and cooling rate during solidification \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(T - \sigma _T - \dot T)$$ \end{document} for the equiaxed solidified microstructures are presented. A castability map was created from the fracture data. More... »
PAGES3637-3642
http://scigraph.springernature.com/pub.10.1007/bf00357329
DOIhttp://dx.doi.org/10.1007/bf00357329
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1016113650
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Materials Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Materials Science and Engineering, International Center for Micropyretics, University of Cincinnati, 45221-0012, Cincinnati, OH, USA",
"id": "http://www.grid.ac/institutes/grid.24827.3b",
"name": [
"Department of Materials Science and Engineering, International Center for Micropyretics, University of Cincinnati, 45221-0012, Cincinnati, OH, USA"
],
"type": "Organization"
},
"familyName": "Lin",
"givenName": "C. S.",
"id": "sg:person.010363230501.68",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010363230501.68"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Materials Science and Engineering, International Center for Micropyretics, University of Cincinnati, 45221-0012, Cincinnati, OH, USA",
"id": "http://www.grid.ac/institutes/grid.24827.3b",
"name": [
"Department of Materials Science and Engineering, International Center for Micropyretics, University of Cincinnati, 45221-0012, Cincinnati, OH, USA"
],
"type": "Organization"
},
"familyName": "Sekhar",
"givenName": "J. A.",
"id": "sg:person.016661564161.49",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016661564161.49"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/bf03350964",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029792246",
"https://doi.org/10.1007/bf03350964"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01159840",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039721304",
"https://doi.org/10.1007/bf01159840"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00353196",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1032762739",
"https://doi.org/10.1007/bf00353196"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02643923",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003405804",
"https://doi.org/10.1007/bf02643923"
],
"type": "CreativeWork"
}
],
"datePublished": "1994-07",
"datePublishedReg": "1994-07-01",
"description": "A high-temperature nickel-base superalloy (Rene 108) was solidified at various cooling rates. The morphology of the equiaxed microstructure and the mechanism for intrinsic microporosity formation were correlated to the processing parameters. A special Gleeble testing procedure (developed previously \u2014 where the samples were quickly raised to a predetermined temperature in the semisolid zone and fractured) was used for the measurement of the fracture data. The upper coherent temperature was noted to be a function of the solidification variables. The amount of strain accommodation and the hot-tearing resistance was found to be influenced by the solidification microstructure. The hot ductility, the semisolid strength, and the corresponding microstructural changes are examined and discussed. Fracture maps which include the temperature, transverse-fracture stress and cooling rate during solidification \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$(T - \\sigma _T - \\dot T)$$\n\\end{document} for the equiaxed solidified microstructures are presented. A castability map was created from the fracture data.",
"genre": "article",
"id": "sg:pub.10.1007/bf00357329",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1312116",
"issn": [
"0022-2461",
"1573-4811"
],
"name": "Journal of Materials Science",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "14",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "29"
}
],
"keywords": [
"high-temperature nickel-based superalloys",
"hot-tearing resistance",
"nickel-based superalloy",
"corresponding microstructural changes",
"fracture data",
"semisolid deformation",
"hot ductility",
"equiaxed microstructure",
"processing parameters",
"solidification microstructure",
"microporosity formation",
"solidification variables",
"solidification morphology",
"microstructural changes",
"cooling rate",
"fracture maps",
"strain accommodation",
"microstructure",
"ductility",
"temperature",
"coherent temperature",
"superalloy",
"solidification",
"testing procedures",
"deformation",
"morphology",
"strength",
"parameters",
"measurements",
"stress",
"resistance",
"maps",
"rate",
"amount",
"formation",
"procedure",
"data",
"mechanism",
"variables",
"function",
"changes",
"accommodation"
],
"name": "Solidification morphology and semisolid deformation in the superalloy Rene 108",
"pagination": "3637-3642",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1016113650"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/bf00357329"
]
}
],
"sameAs": [
"https://doi.org/10.1007/bf00357329",
"https://app.dimensions.ai/details/publication/pub.1016113650"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T09:44",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_239.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/bf00357329"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00357329'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00357329'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00357329'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00357329'
This table displays all metadata directly associated to this object as RDF triples.
123 TRIPLES
22 PREDICATES
72 URIs
60 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/bf00357329 | schema:about | anzsrc-for:09 |
2 | ″ | ″ | anzsrc-for:0912 |
3 | ″ | schema:author | Nce80c54ea4034d1e9b33c73a0639d2e4 |
4 | ″ | schema:citation | sg:pub.10.1007/bf00353196 |
5 | ″ | ″ | sg:pub.10.1007/bf01159840 |
6 | ″ | ″ | sg:pub.10.1007/bf02643923 |
7 | ″ | ″ | sg:pub.10.1007/bf03350964 |
8 | ″ | schema:datePublished | 1994-07 |
9 | ″ | schema:datePublishedReg | 1994-07-01 |
10 | ″ | schema:description | A high-temperature nickel-base superalloy (Rene 108) was solidified at various cooling rates. The morphology of the equiaxed microstructure and the mechanism for intrinsic microporosity formation were correlated to the processing parameters. A special Gleeble testing procedure (developed previously — where the samples were quickly raised to a predetermined temperature in the semisolid zone and fractured) was used for the measurement of the fracture data. The upper coherent temperature was noted to be a function of the solidification variables. The amount of strain accommodation and the hot-tearing resistance was found to be influenced by the solidification microstructure. The hot ductility, the semisolid strength, and the corresponding microstructural changes are examined and discussed. Fracture maps which include the temperature, transverse-fracture stress and cooling rate during solidification \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$(T - \sigma _T - \dot T)$$ \end{document} for the equiaxed solidified microstructures are presented. A castability map was created from the fracture data. |
11 | ″ | schema:genre | article |
12 | ″ | schema:inLanguage | en |
13 | ″ | schema:isAccessibleForFree | false |
14 | ″ | schema:isPartOf | N5c29b6a314f64e7f9862ad5b31371a70 |
15 | ″ | ″ | Nd42ff7b25fce4ff28590eb6fdf7499ac |
16 | ″ | ″ | sg:journal.1312116 |
17 | ″ | schema:keywords | accommodation |
18 | ″ | ″ | amount |
19 | ″ | ″ | changes |
20 | ″ | ″ | coherent temperature |
21 | ″ | ″ | cooling rate |
22 | ″ | ″ | corresponding microstructural changes |
23 | ″ | ″ | data |
24 | ″ | ″ | deformation |
25 | ″ | ″ | ductility |
26 | ″ | ″ | equiaxed microstructure |
27 | ″ | ″ | formation |
28 | ″ | ″ | fracture data |
29 | ″ | ″ | fracture maps |
30 | ″ | ″ | function |
31 | ″ | ″ | high-temperature nickel-based superalloys |
32 | ″ | ″ | hot ductility |
33 | ″ | ″ | hot-tearing resistance |
34 | ″ | ″ | maps |
35 | ″ | ″ | measurements |
36 | ″ | ″ | mechanism |
37 | ″ | ″ | microporosity formation |
38 | ″ | ″ | microstructural changes |
39 | ″ | ″ | microstructure |
40 | ″ | ″ | morphology |
41 | ″ | ″ | nickel-based superalloy |
42 | ″ | ″ | parameters |
43 | ″ | ″ | procedure |
44 | ″ | ″ | processing parameters |
45 | ″ | ″ | rate |
46 | ″ | ″ | resistance |
47 | ″ | ″ | semisolid deformation |
48 | ″ | ″ | solidification |
49 | ″ | ″ | solidification microstructure |
50 | ″ | ″ | solidification morphology |
51 | ″ | ″ | solidification variables |
52 | ″ | ″ | strain accommodation |
53 | ″ | ″ | strength |
54 | ″ | ″ | stress |
55 | ″ | ″ | superalloy |
56 | ″ | ″ | temperature |
57 | ″ | ″ | testing procedures |
58 | ″ | ″ | variables |
59 | ″ | schema:name | Solidification morphology and semisolid deformation in the superalloy Rene 108 |
60 | ″ | schema:pagination | 3637-3642 |
61 | ″ | schema:productId | N1097e69545db48dc881801fa6a3b4091 |
62 | ″ | ″ | Nf83c7321752d4460af57a56cab7a37a3 |
63 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1016113650 |
64 | ″ | ″ | https://doi.org/10.1007/bf00357329 |
65 | ″ | schema:sdDatePublished | 2022-05-10T09:44 |
66 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
67 | ″ | schema:sdPublisher | N7ba73e9012844c378a3c93d688f5b261 |
68 | ″ | schema:url | https://doi.org/10.1007/bf00357329 |
69 | ″ | sgo:license | sg:explorer/license/ |
70 | ″ | sgo:sdDataset | articles |
71 | ″ | rdf:type | schema:ScholarlyArticle |
72 | N1097e69545db48dc881801fa6a3b4091 | schema:name | dimensions_id |
73 | ″ | schema:value | pub.1016113650 |
74 | ″ | rdf:type | schema:PropertyValue |
75 | N5c29b6a314f64e7f9862ad5b31371a70 | schema:volumeNumber | 29 |
76 | ″ | rdf:type | schema:PublicationVolume |
77 | N7ba73e9012844c378a3c93d688f5b261 | schema:name | Springer Nature - SN SciGraph project |
78 | ″ | rdf:type | schema:Organization |
79 | Nce80c54ea4034d1e9b33c73a0639d2e4 | rdf:first | sg:person.010363230501.68 |
80 | ″ | rdf:rest | Nd5e258924f034f0b9ed5e6eddc8e289f |
81 | Nd42ff7b25fce4ff28590eb6fdf7499ac | schema:issueNumber | 14 |
82 | ″ | rdf:type | schema:PublicationIssue |
83 | Nd5e258924f034f0b9ed5e6eddc8e289f | rdf:first | sg:person.016661564161.49 |
84 | ″ | rdf:rest | rdf:nil |
85 | Nf83c7321752d4460af57a56cab7a37a3 | schema:name | doi |
86 | ″ | schema:value | 10.1007/bf00357329 |
87 | ″ | rdf:type | schema:PropertyValue |
88 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
89 | ″ | schema:name | Engineering |
90 | ″ | rdf:type | schema:DefinedTerm |
91 | anzsrc-for:0912 | schema:inDefinedTermSet | anzsrc-for: |
92 | ″ | schema:name | Materials Engineering |
93 | ″ | rdf:type | schema:DefinedTerm |
94 | sg:journal.1312116 | schema:issn | 0022-2461 |
95 | ″ | ″ | 1573-4811 |
96 | ″ | schema:name | Journal of Materials Science |
97 | ″ | schema:publisher | Springer Nature |
98 | ″ | rdf:type | schema:Periodical |
99 | sg:person.010363230501.68 | schema:affiliation | grid-institutes:grid.24827.3b |
100 | ″ | schema:familyName | Lin |
101 | ″ | schema:givenName | C. S. |
102 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010363230501.68 |
103 | ″ | rdf:type | schema:Person |
104 | sg:person.016661564161.49 | schema:affiliation | grid-institutes:grid.24827.3b |
105 | ″ | schema:familyName | Sekhar |
106 | ″ | schema:givenName | J. A. |
107 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016661564161.49 |
108 | ″ | rdf:type | schema:Person |
109 | sg:pub.10.1007/bf00353196 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1032762739 |
110 | ″ | ″ | https://doi.org/10.1007/bf00353196 |
111 | ″ | rdf:type | schema:CreativeWork |
112 | sg:pub.10.1007/bf01159840 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1039721304 |
113 | ″ | ″ | https://doi.org/10.1007/bf01159840 |
114 | ″ | rdf:type | schema:CreativeWork |
115 | sg:pub.10.1007/bf02643923 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1003405804 |
116 | ″ | ″ | https://doi.org/10.1007/bf02643923 |
117 | ″ | rdf:type | schema:CreativeWork |
118 | sg:pub.10.1007/bf03350964 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1029792246 |
119 | ″ | ″ | https://doi.org/10.1007/bf03350964 |
120 | ″ | rdf:type | schema:CreativeWork |
121 | grid-institutes:grid.24827.3b | schema:alternateName | Department of Materials Science and Engineering, International Center for Micropyretics, University of Cincinnati, 45221-0012, Cincinnati, OH, USA |
122 | ″ | schema:name | Department of Materials Science and Engineering, International Center for Micropyretics, University of Cincinnati, 45221-0012, Cincinnati, OH, USA |
123 | ″ | rdf:type | schema:Organization |