Dynamics of pattern formation in lateral-inhibition type neural fields View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1977-06

AUTHORS

Shun-ichi Amari

ABSTRACT

The dynamics of pattern formation is studied for lateral-inhibition type homogeneous neural fields with general connections. Neural fields consisting of single layer are first treated, and it is proved that there are five types of pattern dynamics. The type of the dynamics of a field depends not only on the mutual connections within the field but on the level of homogeneous stimulus given to the field. An example of the dynamics is as follows: A fixed size of localized excitation, once evoked by stimulation, can be retained in the field persistently even after the stimulation vanishes. It moves until it finds the position of the maximum of the input stimulus. Fields consisting of an excitatory and an inhibitory layer are next analyzed. In addition to stationary localized excitation, fields have such pattern dynamics as production of oscillatory waves, travelling waves, active and dual active transients, etc. More... »

PAGES

77-87

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00337259

DOI

http://dx.doi.org/10.1007/bf00337259

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045614723

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/911931


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cybernetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Neurological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nervous System Physiological Phenomena", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neural Inhibition", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "The Center for Systems Neuroscience, University of Massachusetts, Amherst, MA, USA", 
            "Dept. of Mathematical Engineering and Instrumentation Physics, University of Tokyo, 113, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Amari", 
        "givenName": "Shun-ichi", 
        "id": "sg:person.012056121342.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012056121342.18"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02498774", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007912913", 
          "https://doi.org/10.1007/bf02498774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02498774", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007912913", 
          "https://doi.org/10.1007/bf02498774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(72)86068-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008475623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00337054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013254620", 
          "https://doi.org/10.1007/bf00337054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00337054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013254620", 
          "https://doi.org/10.1007/bf00337054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00339367", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018619633", 
          "https://doi.org/10.1007/bf00339367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00339367", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018619633", 
          "https://doi.org/10.1007/bf00339367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00339367", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018619633", 
          "https://doi.org/10.1007/bf00339367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rstb.1956.0012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022058152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00327046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028503470", 
          "https://doi.org/10.1007/bf00327046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00327046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028503470", 
          "https://doi.org/10.1007/bf00327046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00288786", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029246882", 
          "https://doi.org/10.1007/bf00288786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00288786", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029246882", 
          "https://doi.org/10.1007/bf00288786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-12-491850-4.50009-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033071274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00337422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034574906", 
          "https://doi.org/10.1007/bf00337422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00337422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034574906", 
          "https://doi.org/10.1007/bf00337422"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rstb.1952.0012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037923414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0020-7373(69)80025-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038026180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0025-5564(75)90026-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044982003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02477774", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046110424", 
          "https://doi.org/10.1007/bf02477774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0020-7373(75)80016-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051777295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00364115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051987636", 
          "https://doi.org/10.1007/bf00364115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00364115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051987636", 
          "https://doi.org/10.1007/bf00364115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0020-7373(75)80030-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052617308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00252773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052997020", 
          "https://doi.org/10.1007/bf00252773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00252773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052997020", 
          "https://doi.org/10.1007/bf00252773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/proc.1971.8087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061441417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/t-c.1972.223477", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061455626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmc.1972.4309193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061792650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmc.1972.4309193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061792650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0133008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062839621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078068913", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00274806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1080635989", 
          "https://doi.org/10.1007/bf00274806"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1977-06", 
    "datePublishedReg": "1977-06-01", 
    "description": "The dynamics of pattern formation is studied for lateral-inhibition type homogeneous neural fields with general connections. Neural fields consisting of single layer are first treated, and it is proved that there are five types of pattern dynamics. The type of the dynamics of a field depends not only on the mutual connections within the field but on the level of homogeneous stimulus given to the field. An example of the dynamics is as follows: A fixed size of localized excitation, once evoked by stimulation, can be retained in the field persistently even after the stimulation vanishes. It moves until it finds the position of the maximum of the input stimulus. Fields consisting of an excitatory and an inhibitory layer are next analyzed. In addition to stationary localized excitation, fields have such pattern dynamics as production of oscillatory waves, travelling waves, active and dual active transients, etc.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf00337259", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1081741", 
        "issn": [
          "0340-1200", 
          "1432-0770"
        ], 
        "name": "Biological Cybernetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "name": "Dynamics of pattern formation in lateral-inhibition type neural fields", 
    "pagination": "77-87", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00337259"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d9489be79191310d02e1cbd3b7497bdd51478ecd58bd9a38df3c7e70abb85e77"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045614723"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7502533"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "911931"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00337259", 
      "https://app.dimensions.ai/details/publication/pub.1045614723"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T08:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000374_0000000374/records_119717_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF00337259"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00337259'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00337259'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00337259'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00337259'


 

This table displays all metadata directly associated to this object as RDF triples.

164 TRIPLES      21 PREDICATES      56 URIs      25 LITERALS      13 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00337259 schema:about N3826fad1cc884d15b538b92ee0d80f00
2 N40ce4e07892146d794a6b10e8b879e1d
3 N4aad43b58b6f4a9290271d1e3c3f0551
4 N8ca291ac2ddc4b6e927582a34bca9fa2
5 anzsrc-for:11
6 anzsrc-for:1109
7 schema:author Nfd80359ef06a4fc78a63cbcdf0b633cf
8 schema:citation sg:pub.10.1007/bf00252773
9 sg:pub.10.1007/bf00274806
10 sg:pub.10.1007/bf00288786
11 sg:pub.10.1007/bf00327046
12 sg:pub.10.1007/bf00337054
13 sg:pub.10.1007/bf00337422
14 sg:pub.10.1007/bf00339367
15 sg:pub.10.1007/bf00364115
16 sg:pub.10.1007/bf02477774
17 sg:pub.10.1007/bf02498774
18 https://app.dimensions.ai/details/publication/pub.1078068913
19 https://doi.org/10.1016/0025-5564(75)90026-7
20 https://doi.org/10.1016/b978-0-12-491850-4.50009-x
21 https://doi.org/10.1016/s0006-3495(72)86068-5
22 https://doi.org/10.1016/s0020-7373(69)80025-8
23 https://doi.org/10.1016/s0020-7373(75)80016-2
24 https://doi.org/10.1016/s0020-7373(75)80030-7
25 https://doi.org/10.1098/rstb.1952.0012
26 https://doi.org/10.1098/rstb.1956.0012
27 https://doi.org/10.1109/proc.1971.8087
28 https://doi.org/10.1109/t-c.1972.223477
29 https://doi.org/10.1109/tsmc.1972.4309193
30 https://doi.org/10.1137/0133008
31 schema:datePublished 1977-06
32 schema:datePublishedReg 1977-06-01
33 schema:description The dynamics of pattern formation is studied for lateral-inhibition type homogeneous neural fields with general connections. Neural fields consisting of single layer are first treated, and it is proved that there are five types of pattern dynamics. The type of the dynamics of a field depends not only on the mutual connections within the field but on the level of homogeneous stimulus given to the field. An example of the dynamics is as follows: A fixed size of localized excitation, once evoked by stimulation, can be retained in the field persistently even after the stimulation vanishes. It moves until it finds the position of the maximum of the input stimulus. Fields consisting of an excitatory and an inhibitory layer are next analyzed. In addition to stationary localized excitation, fields have such pattern dynamics as production of oscillatory waves, travelling waves, active and dual active transients, etc.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf Nb6da4255d6bc428b8764e22ff184d7d3
38 Ne0c8af76581d452e8fe0a323abac7518
39 sg:journal.1081741
40 schema:name Dynamics of pattern formation in lateral-inhibition type neural fields
41 schema:pagination 77-87
42 schema:productId N44123e823c9e4ac7b2f2e52caa37b853
43 N5904ca0613c44e078ca10f4e6fa764b9
44 Nc8cecf11d88045288ace0dff883143ff
45 Nf5a08d44eb104bdb9370ef4672ea1205
46 Nfa5ef9482ed84260a52cca5b6bdf4bec
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045614723
48 https://doi.org/10.1007/bf00337259
49 schema:sdDatePublished 2019-04-15T08:48
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher Neaa1d5a9a05d488c94e594eac9fb3e68
52 schema:url http://link.springer.com/10.1007/BF00337259
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N3826fad1cc884d15b538b92ee0d80f00 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
57 schema:name Cybernetics
58 rdf:type schema:DefinedTerm
59 N40ce4e07892146d794a6b10e8b879e1d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
60 schema:name Models, Neurological
61 rdf:type schema:DefinedTerm
62 N44123e823c9e4ac7b2f2e52caa37b853 schema:name doi
63 schema:value 10.1007/bf00337259
64 rdf:type schema:PropertyValue
65 N4aad43b58b6f4a9290271d1e3c3f0551 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Neural Inhibition
67 rdf:type schema:DefinedTerm
68 N5904ca0613c44e078ca10f4e6fa764b9 schema:name dimensions_id
69 schema:value pub.1045614723
70 rdf:type schema:PropertyValue
71 N8ca291ac2ddc4b6e927582a34bca9fa2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Nervous System Physiological Phenomena
73 rdf:type schema:DefinedTerm
74 Nb6da4255d6bc428b8764e22ff184d7d3 schema:volumeNumber 27
75 rdf:type schema:PublicationVolume
76 Nc8cecf11d88045288ace0dff883143ff schema:name nlm_unique_id
77 schema:value 7502533
78 rdf:type schema:PropertyValue
79 Ne0c8af76581d452e8fe0a323abac7518 schema:issueNumber 2
80 rdf:type schema:PublicationIssue
81 Neaa1d5a9a05d488c94e594eac9fb3e68 schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 Nf5a08d44eb104bdb9370ef4672ea1205 schema:name readcube_id
84 schema:value d9489be79191310d02e1cbd3b7497bdd51478ecd58bd9a38df3c7e70abb85e77
85 rdf:type schema:PropertyValue
86 Nfa5ef9482ed84260a52cca5b6bdf4bec schema:name pubmed_id
87 schema:value 911931
88 rdf:type schema:PropertyValue
89 Nfd80359ef06a4fc78a63cbcdf0b633cf rdf:first sg:person.012056121342.18
90 rdf:rest rdf:nil
91 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
92 schema:name Medical and Health Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
95 schema:name Neurosciences
96 rdf:type schema:DefinedTerm
97 sg:journal.1081741 schema:issn 0340-1200
98 1432-0770
99 schema:name Biological Cybernetics
100 rdf:type schema:Periodical
101 sg:person.012056121342.18 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
102 schema:familyName Amari
103 schema:givenName Shun-ichi
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012056121342.18
105 rdf:type schema:Person
106 sg:pub.10.1007/bf00252773 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052997020
107 https://doi.org/10.1007/bf00252773
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/bf00274806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1080635989
110 https://doi.org/10.1007/bf00274806
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/bf00288786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029246882
113 https://doi.org/10.1007/bf00288786
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/bf00327046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028503470
116 https://doi.org/10.1007/bf00327046
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/bf00337054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013254620
119 https://doi.org/10.1007/bf00337054
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/bf00337422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034574906
122 https://doi.org/10.1007/bf00337422
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/bf00339367 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018619633
125 https://doi.org/10.1007/bf00339367
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/bf00364115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051987636
128 https://doi.org/10.1007/bf00364115
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/bf02477774 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046110424
131 https://doi.org/10.1007/bf02477774
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/bf02498774 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007912913
134 https://doi.org/10.1007/bf02498774
135 rdf:type schema:CreativeWork
136 https://app.dimensions.ai/details/publication/pub.1078068913 schema:CreativeWork
137 https://doi.org/10.1016/0025-5564(75)90026-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044982003
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/b978-0-12-491850-4.50009-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1033071274
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/s0006-3495(72)86068-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008475623
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/s0020-7373(69)80025-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038026180
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/s0020-7373(75)80016-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051777295
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/s0020-7373(75)80030-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052617308
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1098/rstb.1952.0012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037923414
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1098/rstb.1956.0012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022058152
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1109/proc.1971.8087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061441417
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1109/t-c.1972.223477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061455626
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1109/tsmc.1972.4309193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061792650
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1137/0133008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062839621
160 rdf:type schema:CreativeWork
161 https://www.grid.ac/institutes/grid.26999.3d schema:alternateName University of Tokyo
162 schema:name Dept. of Mathematical Engineering and Instrumentation Physics, University of Tokyo, 113, Tokyo, Japan
163 The Center for Systems Neuroscience, University of Massachusetts, Amherst, MA, USA
164 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...