Different binding of RNA polymerase to individual promoters View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1973-06

AUTHORS

Rolf Willmund, Hubert Kneser

ABSTRACT

The amount of E. coli RNA polymerase which can be bound to individual promoters on λ pgal and λ dgal phage DNA in a stable heparin-resistant form was measured by assessing its capacity to transcribe, upon addition of the nucleoside triphosphates, the RNA sequences starting at these promoters. These RNA species were analysed by competition hybridization to separated single strands of λ, λpgal and λdgal phage DNA.Individual promoters bind, at saturation, different numbers of polymerase molecules. From the amount of polymerase necessary to saturate all promoters (Fig. 3), from the proportions of RNA synthesized at the individual promoters (Table 1) and from the amounts of γ-32P-ATP or-GTP label incorporated into the different RNA species (Tables 2 and 3) we calculate polymerase storage capacities for the promoters as follows: gal: 6 molecules; λ l-strand specific: 3–5 molecules starting with ATP and 1 molecule starting with GTP; λ r-strand specific: 3–5 molecules starting with ATP (and perhaps one molecule starting with GTP); these estimates are lower limits and may be too small by a factor of up to three.The heparin resistant binding of six polymerase molecules to the gal promoter is dependent on CGA protein and cAMP, but ATP and GTP can allow one polymerase to bind to the same site or to a very close one.Several parameters of polymerase binding are different with the individual promoters tested. More... »

PAGES

165-175

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00330991

DOI

http://dx.doi.org/10.1007/bf00330991

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013049760

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/4360101


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adenosine Triphosphate", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacterial Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Binding Sites", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromatography, Ion Exchange", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coliphages", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cyclic AMP", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA-Directed RNA Polymerases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drug Resistance, Microbial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Escherichia coli", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Guanosine Triphosphate", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Heparin", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Kinetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nucleic Acid Hybridization", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Phosphorus Radioisotopes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Binding", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Viral", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transcription, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tritium", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Genetik der Universit\u00e4t zu K\u00f6ln, K\u00f6ln, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6190.e", 
          "name": [
            "Institut f\u00fcr Genetik der Universit\u00e4t zu K\u00f6ln, K\u00f6ln, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Willmund", 
        "givenName": "Rolf", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Genetik der Universit\u00e4t zu K\u00f6ln, K\u00f6ln, Germany", 
          "id": "http://www.grid.ac/institutes/grid.6190.e", 
          "name": [
            "Institut f\u00fcr Genetik der Universit\u00e4t zu K\u00f6ln, K\u00f6ln, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kneser", 
        "givenName": "Hubert", 
        "id": "sg:person.050723322.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.050723322.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00268889", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006763325", 
          "https://doi.org/10.1007/bf00268889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/217825a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010900431", 
          "https://doi.org/10.1038/217825a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00278603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002560972", 
          "https://doi.org/10.1007/bf00278603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00266928", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028449805", 
          "https://doi.org/10.1007/bf00266928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/221043a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033349159", 
          "https://doi.org/10.1038/221043a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00334236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052565245", 
          "https://doi.org/10.1007/bf00334236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/newbio237232a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028599528", 
          "https://doi.org/10.1038/newbio237232a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00433112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031052319", 
          "https://doi.org/10.1007/bf00433112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/newbio237227a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012662002", 
          "https://doi.org/10.1038/newbio237227a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1973-06", 
    "datePublishedReg": "1973-06-01", 
    "description": "The amount of E. coli RNA polymerase which can be bound to individual promoters on \u03bb pgal and \u03bb dgal phage DNA in a stable heparin-resistant form was measured by assessing its capacity to transcribe, upon addition of the nucleoside triphosphates, the RNA sequences starting at these promoters. These RNA species were analysed by competition hybridization to separated single strands of \u03bb, \u03bbpgal and \u03bbdgal phage DNA.Individual promoters bind, at saturation, different numbers of polymerase molecules. From the amount of polymerase necessary to saturate all promoters (Fig. 3), from the proportions of RNA synthesized at the individual promoters (Table 1) and from the amounts of \u03b3-32P-ATP or-GTP label incorporated into the different RNA species (Tables 2 and 3) we calculate polymerase storage capacities for the promoters as follows: gal: 6 molecules; \u03bb l-strand specific: 3\u20135 molecules starting with ATP and 1 molecule starting with GTP; \u03bb r-strand specific: 3\u20135 molecules starting with ATP (and perhaps one molecule starting with GTP); these estimates are lower limits and may be too small by a factor of up to three.The heparin resistant binding of six polymerase molecules to the gal promoter is dependent on CGA protein and cAMP, but ATP and GTP can allow one polymerase to bind to the same site or to a very close one.Several parameters of polymerase binding are different with the individual promoters tested.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf00330991", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297380", 
        "issn": [
          "1617-4615", 
          "1432-1874"
        ], 
        "name": "Molecular Genetics and Genomics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "126"
      }
    ], 
    "keywords": [
      "individual promoters", 
      "RNA species", 
      "RNA polymerase", 
      "polymerase molecules", 
      "phage DNA", 
      "different RNA species", 
      "amount of polymerase", 
      "coli RNA polymerase", 
      "proportion of RNA", 
      "GAL promoter", 
      "competition hybridization", 
      "polymerase binding", 
      "RNA sequences", 
      "promoter", 
      "polymerase", 
      "nucleoside triphosphates", 
      "ATP", 
      "GTP", 
      "species", 
      "single strands", 
      "DNA", 
      "binding", 
      "CgA protein", 
      "same site", 
      "molecules", 
      "RNA", 
      "protein", 
      "different binding", 
      "hybridization", 
      "sequence", 
      "strands", 
      "triphosphate", 
      "cAMP", 
      "sites", 
      "Gal", 
      "amount", 
      "PGAL", 
      "capacity", 
      "specifics", 
      "different numbers", 
      "addition", 
      "factors", 
      "proportion", 
      "form", 
      "number", 
      "close ones", 
      "labels", 
      "estimates", 
      "one", 
      "saturation", 
      "parameters", 
      "lower limit", 
      "limit", 
      "storage capacity", 
      "resistant binding", 
      "dgal phage DNA", 
      "stable heparin-resistant form", 
      "heparin-resistant form", 
      "\u03bbpgal", 
      "\u03bbdgal phage DNA", 
      "GTP label", 
      "polymerase storage capacities", 
      "strand specific"
    ], 
    "name": "Different binding of RNA polymerase to individual promoters", 
    "pagination": "165-175", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013049760"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00330991"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "4360101"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00330991", 
      "https://app.dimensions.ai/details/publication/pub.1013049760"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_146.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf00330991"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00330991'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00330991'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00330991'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00330991'


 

This table displays all metadata directly associated to this object as RDF triples.

242 TRIPLES      21 PREDICATES      117 URIs      100 LITERALS      26 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00330991 schema:about N017b65a1782a4e0399c28909a913bf07
2 N09a37daffad441598cb77d0298f2df9d
3 N0fa3d8f2cbd942c99b22cb8451c4fc0a
4 N282d36ce259749e0a274aca7046c6791
5 N324c3d190c3e49c58375c12c1e2d45aa
6 N3c3dfdf4275d49be92189bd8020bc5a2
7 N436744020277441cb780d2e45b698404
8 N5b18a486ead94e969bb76db616fd8a1f
9 N672e6d2f5e16419198e818a41271ce82
10 N7442a2663f42423cb70943c079e1c0a2
11 N756b969b8ab1401c8005f099be0feb4b
12 N79cfead920224a0b946e58cf7e072e63
13 N7b55a5a7bfb04f5a84a0c7dbae3332e3
14 N91747e358da4411abcdc4726b2c65c43
15 Na50b186dd9614b8ebbf05203f43e284c
16 Na955b9b0a22a4e37b56ec29b583ecc1c
17 Nc20c194712904056bc1a96dfd0689a83
18 Ndac3427f043141d68ff78ba246dfc3f1
19 Ne3e7367844b947b7a355913c795f5303
20 anzsrc-for:06
21 anzsrc-for:0604
22 schema:author N26957a1262284d73b36f3e3ec0f79357
23 schema:citation sg:pub.10.1007/bf00266928
24 sg:pub.10.1007/bf00268889
25 sg:pub.10.1007/bf00278603
26 sg:pub.10.1007/bf00334236
27 sg:pub.10.1007/bf00433112
28 sg:pub.10.1038/217825a0
29 sg:pub.10.1038/221043a0
30 sg:pub.10.1038/newbio237227a0
31 sg:pub.10.1038/newbio237232a0
32 schema:datePublished 1973-06
33 schema:datePublishedReg 1973-06-01
34 schema:description The amount of E. coli RNA polymerase which can be bound to individual promoters on λ pgal and λ dgal phage DNA in a stable heparin-resistant form was measured by assessing its capacity to transcribe, upon addition of the nucleoside triphosphates, the RNA sequences starting at these promoters. These RNA species were analysed by competition hybridization to separated single strands of λ, λpgal and λdgal phage DNA.Individual promoters bind, at saturation, different numbers of polymerase molecules. From the amount of polymerase necessary to saturate all promoters (Fig. 3), from the proportions of RNA synthesized at the individual promoters (Table 1) and from the amounts of γ-32P-ATP or-GTP label incorporated into the different RNA species (Tables 2 and 3) we calculate polymerase storage capacities for the promoters as follows: gal: 6 molecules; λ l-strand specific: 3–5 molecules starting with ATP and 1 molecule starting with GTP; λ r-strand specific: 3–5 molecules starting with ATP (and perhaps one molecule starting with GTP); these estimates are lower limits and may be too small by a factor of up to three.The heparin resistant binding of six polymerase molecules to the gal promoter is dependent on CGA protein and cAMP, but ATP and GTP can allow one polymerase to bind to the same site or to a very close one.Several parameters of polymerase binding are different with the individual promoters tested.
35 schema:genre article
36 schema:isAccessibleForFree false
37 schema:isPartOf Nd8c003717c6949ac8e329e9d53bdd6ae
38 Ne2a7416508354bf88b68cea401f72c05
39 sg:journal.1297380
40 schema:keywords ATP
41 CgA protein
42 DNA
43 GAL promoter
44 GTP
45 GTP label
46 Gal
47 PGAL
48 RNA
49 RNA polymerase
50 RNA sequences
51 RNA species
52 addition
53 amount
54 amount of polymerase
55 binding
56 cAMP
57 capacity
58 close ones
59 coli RNA polymerase
60 competition hybridization
61 dgal phage DNA
62 different RNA species
63 different binding
64 different numbers
65 estimates
66 factors
67 form
68 heparin-resistant form
69 hybridization
70 individual promoters
71 labels
72 limit
73 lower limit
74 molecules
75 nucleoside triphosphates
76 number
77 one
78 parameters
79 phage DNA
80 polymerase
81 polymerase binding
82 polymerase molecules
83 polymerase storage capacities
84 promoter
85 proportion
86 proportion of RNA
87 protein
88 resistant binding
89 same site
90 saturation
91 sequence
92 single strands
93 sites
94 species
95 specifics
96 stable heparin-resistant form
97 storage capacity
98 strand specific
99 strands
100 triphosphate
101 λdgal phage DNA
102 λpgal
103 schema:name Different binding of RNA polymerase to individual promoters
104 schema:pagination 165-175
105 schema:productId N5779782d3c57417fa3146a88a028682a
106 N57e500ff3488475e83a5bdeabf828a83
107 Na68f98400a1349d1aa66fafc9366e609
108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013049760
109 https://doi.org/10.1007/bf00330991
110 schema:sdDatePublished 2022-01-01T18:01
111 schema:sdLicense https://scigraph.springernature.com/explorer/license/
112 schema:sdPublisher Nf348bb972d37469d97a2712fae479616
113 schema:url https://doi.org/10.1007/bf00330991
114 sgo:license sg:explorer/license/
115 sgo:sdDataset articles
116 rdf:type schema:ScholarlyArticle
117 N017b65a1782a4e0399c28909a913bf07 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Binding Sites
119 rdf:type schema:DefinedTerm
120 N09a37daffad441598cb77d0298f2df9d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Cyclic AMP
122 rdf:type schema:DefinedTerm
123 N0fa3d8f2cbd942c99b22cb8451c4fc0a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Time Factors
125 rdf:type schema:DefinedTerm
126 N26957a1262284d73b36f3e3ec0f79357 rdf:first N3607d711e145418da88e9434ff6de02a
127 rdf:rest Nc799e8174bc141baa6327eeb18a110a9
128 N282d36ce259749e0a274aca7046c6791 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Protein Binding
130 rdf:type schema:DefinedTerm
131 N324c3d190c3e49c58375c12c1e2d45aa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Chromatography, Ion Exchange
133 rdf:type schema:DefinedTerm
134 N3607d711e145418da88e9434ff6de02a schema:affiliation grid-institutes:grid.6190.e
135 schema:familyName Willmund
136 schema:givenName Rolf
137 rdf:type schema:Person
138 N3c3dfdf4275d49be92189bd8020bc5a2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Escherichia coli
140 rdf:type schema:DefinedTerm
141 N436744020277441cb780d2e45b698404 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name RNA, Viral
143 rdf:type schema:DefinedTerm
144 N5779782d3c57417fa3146a88a028682a schema:name pubmed_id
145 schema:value 4360101
146 rdf:type schema:PropertyValue
147 N57e500ff3488475e83a5bdeabf828a83 schema:name doi
148 schema:value 10.1007/bf00330991
149 rdf:type schema:PropertyValue
150 N5b18a486ead94e969bb76db616fd8a1f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Bacterial Proteins
152 rdf:type schema:DefinedTerm
153 N672e6d2f5e16419198e818a41271ce82 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Adenosine Triphosphate
155 rdf:type schema:DefinedTerm
156 N7442a2663f42423cb70943c079e1c0a2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Nucleic Acid Hybridization
158 rdf:type schema:DefinedTerm
159 N756b969b8ab1401c8005f099be0feb4b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Transcription, Genetic
161 rdf:type schema:DefinedTerm
162 N79cfead920224a0b946e58cf7e072e63 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
163 schema:name Drug Resistance, Microbial
164 rdf:type schema:DefinedTerm
165 N7b55a5a7bfb04f5a84a0c7dbae3332e3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Phosphorus Radioisotopes
167 rdf:type schema:DefinedTerm
168 N91747e358da4411abcdc4726b2c65c43 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Coliphages
170 rdf:type schema:DefinedTerm
171 Na50b186dd9614b8ebbf05203f43e284c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name DNA-Directed RNA Polymerases
173 rdf:type schema:DefinedTerm
174 Na68f98400a1349d1aa66fafc9366e609 schema:name dimensions_id
175 schema:value pub.1013049760
176 rdf:type schema:PropertyValue
177 Na955b9b0a22a4e37b56ec29b583ecc1c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Kinetics
179 rdf:type schema:DefinedTerm
180 Nc20c194712904056bc1a96dfd0689a83 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Guanosine Triphosphate
182 rdf:type schema:DefinedTerm
183 Nc799e8174bc141baa6327eeb18a110a9 rdf:first sg:person.050723322.34
184 rdf:rest rdf:nil
185 Nd8c003717c6949ac8e329e9d53bdd6ae schema:issueNumber 2
186 rdf:type schema:PublicationIssue
187 Ndac3427f043141d68ff78ba246dfc3f1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
188 schema:name Tritium
189 rdf:type schema:DefinedTerm
190 Ne2a7416508354bf88b68cea401f72c05 schema:volumeNumber 126
191 rdf:type schema:PublicationVolume
192 Ne3e7367844b947b7a355913c795f5303 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
193 schema:name Heparin
194 rdf:type schema:DefinedTerm
195 Nf348bb972d37469d97a2712fae479616 schema:name Springer Nature - SN SciGraph project
196 rdf:type schema:Organization
197 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
198 schema:name Biological Sciences
199 rdf:type schema:DefinedTerm
200 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
201 schema:name Genetics
202 rdf:type schema:DefinedTerm
203 sg:journal.1297380 schema:issn 1432-1874
204 1617-4615
205 schema:name Molecular Genetics and Genomics
206 schema:publisher Springer Nature
207 rdf:type schema:Periodical
208 sg:person.050723322.34 schema:affiliation grid-institutes:grid.6190.e
209 schema:familyName Kneser
210 schema:givenName Hubert
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.050723322.34
212 rdf:type schema:Person
213 sg:pub.10.1007/bf00266928 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028449805
214 https://doi.org/10.1007/bf00266928
215 rdf:type schema:CreativeWork
216 sg:pub.10.1007/bf00268889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006763325
217 https://doi.org/10.1007/bf00268889
218 rdf:type schema:CreativeWork
219 sg:pub.10.1007/bf00278603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002560972
220 https://doi.org/10.1007/bf00278603
221 rdf:type schema:CreativeWork
222 sg:pub.10.1007/bf00334236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052565245
223 https://doi.org/10.1007/bf00334236
224 rdf:type schema:CreativeWork
225 sg:pub.10.1007/bf00433112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031052319
226 https://doi.org/10.1007/bf00433112
227 rdf:type schema:CreativeWork
228 sg:pub.10.1038/217825a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010900431
229 https://doi.org/10.1038/217825a0
230 rdf:type schema:CreativeWork
231 sg:pub.10.1038/221043a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033349159
232 https://doi.org/10.1038/221043a0
233 rdf:type schema:CreativeWork
234 sg:pub.10.1038/newbio237227a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012662002
235 https://doi.org/10.1038/newbio237227a0
236 rdf:type schema:CreativeWork
237 sg:pub.10.1038/newbio237232a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028599528
238 https://doi.org/10.1038/newbio237232a0
239 rdf:type schema:CreativeWork
240 grid-institutes:grid.6190.e schema:alternateName Institut für Genetik der Universität zu Köln, Köln, Germany
241 schema:name Institut für Genetik der Universität zu Köln, Köln, Germany
242 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...