Uptake, integration, expression and genetic transmission of a selectable chimaeric gene by plant protoplasts View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1985-05

AUTHORS

R. Hain, P. Stabel, A. P. Czernilofsky, H. H. Steinbiß, L. Herrera-Estrella, J. Schell

ABSTRACT

Genetic transformation of Nicotiana tabacum protoplasts was achieved by incubation of protoplasts with a plasmid DNA-calcium phosphate coprecipitate, followed by fusion of the protoplasts in the presence of polyvinyl alcohol and subsequent exposure to high pH. A derivative of the plasmid pBR322 containing a chimaeric gene, consisting of the nopaline synthase promoter, the coding region of the aminoglycoside phosphotransferase gene of Tn5 and the polyadenylation signal region of the octopine synthase gene, was used for these transformation experiments. This chimaeric gene confers resistance of transformed plant cells to kanamycin. This novel transformation procedure reproducibly yielded transformants at frequencies of approximately 0.01%. Aminoglycoside phosphotransferase II activity was detected in both transformed calli and in regenerated plants. DNA from some of the transformed clones was analyzed by Southern blot hybridization. The input DNA appears to be integrated into high molecular weight cellular DNA. Genetic analysis of one of the kanamycin resistant plants shows that the chimaeric gene is transmitted to the progeny as a single dominant trait in a Mendelian fashion. As a comparison the input DNA was also introduced into tobacco protoplasts using Agrobacterium tumefaciens and Ti-plasmid derived gene vectors. More... »

PAGES

161-168

References to SciGraph publications

  • 1984. The Use of the Ti Plasmid of Agrobacterium to Study the Transfer and Expression of Foreign DNA in Plant Cells: New Vectors and Methods in GENETIC ENGINEERING
  • 1983-05. Expression of chimaeric genes transferred into plant cells using a Ti-plasmid-derived vector in NATURE
  • 1983-02. Introduction of Escherichia coli cells and spheroplasts into Vinca protoplasts in PLANT CELL REPORTS
  • 1974-10. Size and location of the transforming region in human adenovirus type 5 DNA in NATURE
  • 1984-04. Fusion of Agrobacterium and E. coli spheroplasts with Nicotiana tabacum protoplasts — Direct gene transfer from microorganism to higher plant in PLANT CELL REPORTS
  • 1973-07. Streptomycin-resistant Plants from Callus Culture of Haploid Tobacco in NATURE
  • 1982-03. In vitro transformation of plant protoplasts with Ti-plasmid DNA in NATURE
  • 1984-06. E. coli spheroplast-mediated transfer of cloned cauliflower mosaic virus DNA into plant protoplasts in MOLECULAR GENETICS AND GENOMICS
  • 1983-10. Agarose plating and a bead type culture technique enable and stimulate development of protoplast-derived colonies in a number of plant species in PLANT CELL REPORTS
  • 1981-07. Transformation of Vinca protoplasts mediated by Agrobacterium spheroplasts in MOLECULAR GENETICS AND GENOMICS
  • 1978-05. A novel cell-fusion method of protoplasts by polyvinyl alcohol in THE SCIENCE OF NATURE
  • 1979-01. In vitro transformation of cultured cells from Nicotiana tabacum by Agrobacterium tumefaciens in NATURE
  • 1983-07. A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation in NATURE
  • Journal

    TITLE

    Molecular Genetics and Genomics

    ISSUE

    2

    VOLUME

    199

    Related Patents

  • Transgenic Seeds For Propagation Of Disease, Insect And Herbicide Resistant Plants With Enhanced Fatty Acid Synthesis And Carbohydrate Metabolism; Improving Nutrient Quality Of Crops
  • Canola Cultivar Dn040847
  • Canola Cultivar Dn040844
  • Canola Cultivar Dn040244
  • Application Of Α-Amylase Gene Promoter And Signal Sequence In The Production Of Recombinant Proteins In Transgenic Plants And Transgenic Plant Seeds
  • Tomato Fruit Having Increased Firmness
  • Methods For Increasing The Yield Of Fermentable Sugars From Plant Stover
  • Canola Cultivar Dn040845
  • Canola Cultivar Dn040856
  • Canola Cultivars Having High Yield And Stabilized Fatty Acid Profiles
  • Process For Protein Production In Plants
  • Gene Expression System Comprising The Promoter Region Of The Alpha-Amylase Genes
  • Gene Expression System Comprising The Promoter Region Of The Α-Amylase Genes
  • Closterovirus-Resistant Melon Plants
  • Infecting Immature Embryo Of Rice With Agrobacterium, Co-Culturing With Dicot Suspension Culture During Transformation, Growing Into Callus In Selective Medium Including Plant Growth Hormone, Allowing Regeneration
  • Methods For Increasing The Yield Of Fermentable Sugars From Plant Stover
  • Canola Cultivar Dn040839
  • Process For Protein Production In Plants
  • Isolated Nucleotide Sequence Of The Acetohidroxy Acids Synthase Gene Promotor; Vector; Process For Heterologous Gene Expression; Structure Of The Nucleic Acid And Method Of Selection Of The Transgenic Vegetal Material
  • Omega-9 Quality Brassica Juncea
  • Multimeric Protein For Fermentation Of Ethanol From Pla Nt Biomass; Enhancing Quality Of Animal Feeds
  • Process For Protein Production In Plants
  • Producing Genetically Engineered Plants With Increased Sensitivity To Abscisic Acid, Drought Tolerance, Productivity And Yields; Age Resistance; Enzyme Inhibitors
  • Canola Cultivar Dn041100
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf00330254

    DOI

    http://dx.doi.org/10.1007/bf00330254

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1011873691


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Max-Planck-Institut f\u00fcr Z\u00fcchtungsforschung, 5000, K\u00f6ln 30, FRG", 
              "id": "http://www.grid.ac/institutes/grid.419498.9", 
              "name": [
                "Max-Planck-Institut f\u00fcr Z\u00fcchtungsforschung, 5000, K\u00f6ln 30, FRG"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hain", 
            "givenName": "R.", 
            "id": "sg:person.015306350227.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015306350227.66"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Max-Planck-Institut f\u00fcr Z\u00fcchtungsforschung, 5000, K\u00f6ln 30, FRG", 
              "id": "http://www.grid.ac/institutes/grid.419498.9", 
              "name": [
                "Max-Planck-Institut f\u00fcr Z\u00fcchtungsforschung, 5000, K\u00f6ln 30, FRG"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Stabel", 
            "givenName": "P.", 
            "id": "sg:person.0611517606.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611517606.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Max-Planck-Institut f\u00fcr Z\u00fcchtungsforschung, 5000, K\u00f6ln 30, FRG", 
              "id": "http://www.grid.ac/institutes/grid.419498.9", 
              "name": [
                "Max-Planck-Institut f\u00fcr Z\u00fcchtungsforschung, 5000, K\u00f6ln 30, FRG"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Czernilofsky", 
            "givenName": "A. P.", 
            "id": "sg:person.063412466.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.063412466.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Max-Planck-Institut f\u00fcr Z\u00fcchtungsforschung, 5000, K\u00f6ln 30, FRG", 
              "id": "http://www.grid.ac/institutes/grid.419498.9", 
              "name": [
                "Max-Planck-Institut f\u00fcr Z\u00fcchtungsforschung, 5000, K\u00f6ln 30, FRG"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Steinbi\u00df", 
            "givenName": "H. H.", 
            "id": "sg:person.07417170227.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07417170227.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratorium voor Genetika, Rijksuniversiteit Gent, B-9000, Gent, Belgium", 
              "id": "http://www.grid.ac/institutes/grid.5342.0", 
              "name": [
                "Laboratorium voor Genetika, Rijksuniversiteit Gent, B-9000, Gent, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Herrera-Estrella", 
            "givenName": "L.", 
            "id": "sg:person.01154341423.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154341423.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratorium voor Genetika, Rijksuniversiteit Gent, B-9000, Gent, Belgium", 
              "id": "http://www.grid.ac/institutes/grid.5342.0", 
              "name": [
                "Max-Planck-Institut f\u00fcr Z\u00fcchtungsforschung, 5000, K\u00f6ln 30, FRG", 
                "Laboratorium voor Genetika, Rijksuniversiteit Gent, B-9000, Gent, Belgium"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schell", 
            "givenName": "J.", 
            "id": "sg:person.016705276677.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016705276677.96"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00269151", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040500001", 
              "https://doi.org/10.1007/bf00269151"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00269230", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1078816517", 
              "https://doi.org/10.1007/bf00269230"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00270972", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028497677", 
              "https://doi.org/10.1007/bf00270972"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00269659", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016477082", 
              "https://doi.org/10.1007/bf00269659"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/277129a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032852748", 
              "https://doi.org/10.1038/277129a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/296072a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052220023", 
              "https://doi.org/10.1038/296072a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00332778", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006970381", 
              "https://doi.org/10.1007/bf00332778"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/303209a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051577901", 
              "https://doi.org/10.1038/303209a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4684-4793-4_13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009159381", 
              "https://doi.org/10.1007/978-1-4684-4793-4_13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/304184a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030766221", 
              "https://doi.org/10.1038/304184a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00368577", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035165278", 
              "https://doi.org/10.1007/bf00368577"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/newbio244029a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022855491", 
              "https://doi.org/10.1038/newbio244029a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/251687a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001747773", 
              "https://doi.org/10.1038/251687a0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1985-05", 
        "datePublishedReg": "1985-05-01", 
        "description": "Genetic transformation of Nicotiana tabacum protoplasts was achieved by incubation of protoplasts with a plasmid DNA-calcium phosphate coprecipitate, followed by fusion of the protoplasts in the presence of polyvinyl alcohol and subsequent exposure to high pH. A derivative of the plasmid pBR322 containing a chimaeric gene, consisting of the nopaline synthase promoter, the coding region of the aminoglycoside phosphotransferase gene of Tn5 and the polyadenylation signal region of the octopine synthase gene, was used for these transformation experiments. This chimaeric gene confers resistance of transformed plant cells to kanamycin. This novel transformation procedure reproducibly yielded transformants at frequencies of approximately 0.01%. Aminoglycoside phosphotransferase II activity was detected in both transformed calli and in regenerated plants. DNA from some of the transformed clones was analyzed by Southern blot hybridization. The input DNA appears to be integrated into high molecular weight cellular DNA. Genetic analysis of one of the kanamycin resistant plants shows that the chimaeric gene is transmitted to the progeny as a single dominant trait in a Mendelian fashion. As a comparison the input DNA was also introduced into tobacco protoplasts using Agrobacterium tumefaciens and Ti-plasmid derived gene vectors.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/bf00330254", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1297380", 
            "issn": [
              "1617-4615", 
              "1432-1874"
            ], 
            "name": "Molecular Genetics and Genomics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "199"
          }
        ], 
        "keywords": [
          "chimaeric gene", 
          "octopine synthase gene", 
          "kanamycin-resistant plants", 
          "nopaline synthase promoter", 
          "input DNA", 
          "single dominant trait", 
          "Nicotiana tabacum protoplasts", 
          "polyadenylation signal region", 
          "high molecular weight cellular DNA", 
          "aminoglycoside phosphotransferase gene", 
          "Incubation of protoplasts", 
          "plant cells", 
          "regenerated plants", 
          "resistant plants", 
          "tobacco protoplasts", 
          "genetic transformation", 
          "plant protoplasts", 
          "synthase promoter", 
          "Agrobacterium tumefaciens", 
          "synthase gene", 
          "Southern blot hybridization", 
          "Ti plasmid", 
          "phosphotransferase gene", 
          "Mendelian fashion", 
          "tabacum protoplasts", 
          "genetic analysis", 
          "protoplasts", 
          "cellular DNA", 
          "genes", 
          "transformation experiments", 
          "II activity", 
          "weight cellular DNA", 
          "blot hybridization", 
          "DNA", 
          "novel transformation procedure", 
          "plants", 
          "transformation procedure", 
          "dominant trait", 
          "genetic transmission", 
          "gene vectors", 
          "tumefaciens", 
          "transformants", 
          "Tn5", 
          "promoter", 
          "progeny", 
          "traits", 
          "signal region", 
          "clones", 
          "plasmid", 
          "callus", 
          "hybridization", 
          "expression", 
          "cells", 
          "region", 
          "kanamycin", 
          "subsequent exposure", 
          "uptake", 
          "fusion", 
          "incubation", 
          "activity", 
          "vector", 
          "resistance", 
          "coprecipitates", 
          "presence", 
          "fashion", 
          "exposure", 
          "analysis", 
          "experiments", 
          "transformation", 
          "transmission", 
          "derivatives", 
          "comparison", 
          "integration", 
          "frequency", 
          "alcohol", 
          "procedure", 
          "polyvinyl alcohol"
        ], 
        "name": "Uptake, integration, expression and genetic transmission of a selectable chimaeric gene by plant protoplasts", 
        "pagination": "161-168", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1011873691"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf00330254"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf00330254", 
          "https://app.dimensions.ai/details/publication/pub.1011873691"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:19", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_203.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/bf00330254"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00330254'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00330254'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00330254'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00330254'


     

    This table displays all metadata directly associated to this object as RDF triples.

    225 TRIPLES      21 PREDICATES      115 URIs      94 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf00330254 schema:about anzsrc-for:06
    2 anzsrc-for:0604
    3 schema:author N6b30d01cc8c04818b17e56c964ad32fe
    4 schema:citation sg:pub.10.1007/978-1-4684-4793-4_13
    5 sg:pub.10.1007/bf00269151
    6 sg:pub.10.1007/bf00269230
    7 sg:pub.10.1007/bf00269659
    8 sg:pub.10.1007/bf00270972
    9 sg:pub.10.1007/bf00332778
    10 sg:pub.10.1007/bf00368577
    11 sg:pub.10.1038/251687a0
    12 sg:pub.10.1038/277129a0
    13 sg:pub.10.1038/296072a0
    14 sg:pub.10.1038/303209a0
    15 sg:pub.10.1038/304184a0
    16 sg:pub.10.1038/newbio244029a0
    17 schema:datePublished 1985-05
    18 schema:datePublishedReg 1985-05-01
    19 schema:description Genetic transformation of Nicotiana tabacum protoplasts was achieved by incubation of protoplasts with a plasmid DNA-calcium phosphate coprecipitate, followed by fusion of the protoplasts in the presence of polyvinyl alcohol and subsequent exposure to high pH. A derivative of the plasmid pBR322 containing a chimaeric gene, consisting of the nopaline synthase promoter, the coding region of the aminoglycoside phosphotransferase gene of Tn5 and the polyadenylation signal region of the octopine synthase gene, was used for these transformation experiments. This chimaeric gene confers resistance of transformed plant cells to kanamycin. This novel transformation procedure reproducibly yielded transformants at frequencies of approximately 0.01%. Aminoglycoside phosphotransferase II activity was detected in both transformed calli and in regenerated plants. DNA from some of the transformed clones was analyzed by Southern blot hybridization. The input DNA appears to be integrated into high molecular weight cellular DNA. Genetic analysis of one of the kanamycin resistant plants shows that the chimaeric gene is transmitted to the progeny as a single dominant trait in a Mendelian fashion. As a comparison the input DNA was also introduced into tobacco protoplasts using Agrobacterium tumefaciens and Ti-plasmid derived gene vectors.
    20 schema:genre article
    21 schema:isAccessibleForFree false
    22 schema:isPartOf N265d8ce98d544290b04d957cadab0fcc
    23 N998071ca8c6c410f8acc6c31edbded49
    24 sg:journal.1297380
    25 schema:keywords Agrobacterium tumefaciens
    26 DNA
    27 II activity
    28 Incubation of protoplasts
    29 Mendelian fashion
    30 Nicotiana tabacum protoplasts
    31 Southern blot hybridization
    32 Ti plasmid
    33 Tn5
    34 activity
    35 alcohol
    36 aminoglycoside phosphotransferase gene
    37 analysis
    38 blot hybridization
    39 callus
    40 cells
    41 cellular DNA
    42 chimaeric gene
    43 clones
    44 comparison
    45 coprecipitates
    46 derivatives
    47 dominant trait
    48 experiments
    49 exposure
    50 expression
    51 fashion
    52 frequency
    53 fusion
    54 gene vectors
    55 genes
    56 genetic analysis
    57 genetic transformation
    58 genetic transmission
    59 high molecular weight cellular DNA
    60 hybridization
    61 incubation
    62 input DNA
    63 integration
    64 kanamycin
    65 kanamycin-resistant plants
    66 nopaline synthase promoter
    67 novel transformation procedure
    68 octopine synthase gene
    69 phosphotransferase gene
    70 plant cells
    71 plant protoplasts
    72 plants
    73 plasmid
    74 polyadenylation signal region
    75 polyvinyl alcohol
    76 presence
    77 procedure
    78 progeny
    79 promoter
    80 protoplasts
    81 regenerated plants
    82 region
    83 resistance
    84 resistant plants
    85 signal region
    86 single dominant trait
    87 subsequent exposure
    88 synthase gene
    89 synthase promoter
    90 tabacum protoplasts
    91 tobacco protoplasts
    92 traits
    93 transformants
    94 transformation
    95 transformation experiments
    96 transformation procedure
    97 transmission
    98 tumefaciens
    99 uptake
    100 vector
    101 weight cellular DNA
    102 schema:name Uptake, integration, expression and genetic transmission of a selectable chimaeric gene by plant protoplasts
    103 schema:pagination 161-168
    104 schema:productId N4f97cc4bc2d340be94f5de4f26a3d686
    105 Nb9e43d0fdaa44ad29159f998924e7854
    106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011873691
    107 https://doi.org/10.1007/bf00330254
    108 schema:sdDatePublished 2022-12-01T06:19
    109 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    110 schema:sdPublisher N8658fc3d9da645c0a371ac8abd8f9c51
    111 schema:url https://doi.org/10.1007/bf00330254
    112 sgo:license sg:explorer/license/
    113 sgo:sdDataset articles
    114 rdf:type schema:ScholarlyArticle
    115 N01011aa768d54071b6a9af53655f3381 rdf:first sg:person.07417170227.49
    116 rdf:rest N713fa037385944efa60659965943b9b9
    117 N265d8ce98d544290b04d957cadab0fcc schema:volumeNumber 199
    118 rdf:type schema:PublicationVolume
    119 N4f97cc4bc2d340be94f5de4f26a3d686 schema:name dimensions_id
    120 schema:value pub.1011873691
    121 rdf:type schema:PropertyValue
    122 N6b30d01cc8c04818b17e56c964ad32fe rdf:first sg:person.015306350227.66
    123 rdf:rest N9ba463f561c044d684df609dc14015a0
    124 N713fa037385944efa60659965943b9b9 rdf:first sg:person.01154341423.52
    125 rdf:rest Naa1cbdd2716a4bcf8a41948072abb64e
    126 N8658fc3d9da645c0a371ac8abd8f9c51 schema:name Springer Nature - SN SciGraph project
    127 rdf:type schema:Organization
    128 N998071ca8c6c410f8acc6c31edbded49 schema:issueNumber 2
    129 rdf:type schema:PublicationIssue
    130 N9ba463f561c044d684df609dc14015a0 rdf:first sg:person.0611517606.58
    131 rdf:rest Na55c3780e1c0430897832555260b31f7
    132 Na55c3780e1c0430897832555260b31f7 rdf:first sg:person.063412466.34
    133 rdf:rest N01011aa768d54071b6a9af53655f3381
    134 Naa1cbdd2716a4bcf8a41948072abb64e rdf:first sg:person.016705276677.96
    135 rdf:rest rdf:nil
    136 Nb9e43d0fdaa44ad29159f998924e7854 schema:name doi
    137 schema:value 10.1007/bf00330254
    138 rdf:type schema:PropertyValue
    139 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    140 schema:name Biological Sciences
    141 rdf:type schema:DefinedTerm
    142 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    143 schema:name Genetics
    144 rdf:type schema:DefinedTerm
    145 sg:journal.1297380 schema:issn 1432-1874
    146 1617-4615
    147 schema:name Molecular Genetics and Genomics
    148 schema:publisher Springer Nature
    149 rdf:type schema:Periodical
    150 sg:person.01154341423.52 schema:affiliation grid-institutes:grid.5342.0
    151 schema:familyName Herrera-Estrella
    152 schema:givenName L.
    153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154341423.52
    154 rdf:type schema:Person
    155 sg:person.015306350227.66 schema:affiliation grid-institutes:grid.419498.9
    156 schema:familyName Hain
    157 schema:givenName R.
    158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015306350227.66
    159 rdf:type schema:Person
    160 sg:person.016705276677.96 schema:affiliation grid-institutes:grid.5342.0
    161 schema:familyName Schell
    162 schema:givenName J.
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016705276677.96
    164 rdf:type schema:Person
    165 sg:person.0611517606.58 schema:affiliation grid-institutes:grid.419498.9
    166 schema:familyName Stabel
    167 schema:givenName P.
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611517606.58
    169 rdf:type schema:Person
    170 sg:person.063412466.34 schema:affiliation grid-institutes:grid.419498.9
    171 schema:familyName Czernilofsky
    172 schema:givenName A. P.
    173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.063412466.34
    174 rdf:type schema:Person
    175 sg:person.07417170227.49 schema:affiliation grid-institutes:grid.419498.9
    176 schema:familyName Steinbiß
    177 schema:givenName H. H.
    178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07417170227.49
    179 rdf:type schema:Person
    180 sg:pub.10.1007/978-1-4684-4793-4_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009159381
    181 https://doi.org/10.1007/978-1-4684-4793-4_13
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1007/bf00269151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040500001
    184 https://doi.org/10.1007/bf00269151
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1007/bf00269230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078816517
    187 https://doi.org/10.1007/bf00269230
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1007/bf00269659 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016477082
    190 https://doi.org/10.1007/bf00269659
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1007/bf00270972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028497677
    193 https://doi.org/10.1007/bf00270972
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1007/bf00332778 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006970381
    196 https://doi.org/10.1007/bf00332778
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1007/bf00368577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035165278
    199 https://doi.org/10.1007/bf00368577
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1038/251687a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001747773
    202 https://doi.org/10.1038/251687a0
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1038/277129a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032852748
    205 https://doi.org/10.1038/277129a0
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1038/296072a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052220023
    208 https://doi.org/10.1038/296072a0
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1038/303209a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051577901
    211 https://doi.org/10.1038/303209a0
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1038/304184a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030766221
    214 https://doi.org/10.1038/304184a0
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1038/newbio244029a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022855491
    217 https://doi.org/10.1038/newbio244029a0
    218 rdf:type schema:CreativeWork
    219 grid-institutes:grid.419498.9 schema:alternateName Max-Planck-Institut für Züchtungsforschung, 5000, Köln 30, FRG
    220 schema:name Max-Planck-Institut für Züchtungsforschung, 5000, Köln 30, FRG
    221 rdf:type schema:Organization
    222 grid-institutes:grid.5342.0 schema:alternateName Laboratorium voor Genetika, Rijksuniversiteit Gent, B-9000, Gent, Belgium
    223 schema:name Laboratorium voor Genetika, Rijksuniversiteit Gent, B-9000, Gent, Belgium
    224 Max-Planck-Institut für Züchtungsforschung, 5000, Köln 30, FRG
    225 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...