Expression of heat shock-β-galactosidase hybrid genes in cultured Drosophila cells View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1984-12

AUTHORS

R. Lawson, R. Mestril, P. Schiller, R. Voellmy

ABSTRACT

Derivatives of Drosophila 70,000 dalton heat shock protein (hsp70) genes were constructed in which all of the hsp70 coding sequence but for the first seven codons had been substituted by a DNA segment coding for E. coli β-galactosidase. The constructs were capable of directing the synthesis of active β-galactosidase in COS1 (SV40 transformed African Green Monkey Kidney) cells. The hybrid genes were then used to develop a procedure permitting the introduction of genes and their transient expression in cultured cells of Drosophila melanogaster. Introduction of hybrid genes was achieved by DEAE-dextran-mediated transfection. Substantial gene activity was observed in heat-treated cells only 4 h, maximal activity 24 h after transfection. Various parameters of the transfection/transient expression system including the effects of different 3'nontranslated sequences on hybrid gene expression were investigated in an attempt to provide a useful procedure for studies of the expression of other genes in D. melanogaster cells. To show that promoters which are weaker than that of the hsp70 gene direct the synthesis of easily measurable amounts of β-galactosidase in D. melanogaster cells, the expression of a hsp84-β-galactosidase hybrid gene was also examined. Expression of the hsp70 hybrid gene occurs during heat shock, at temperatures at which other proteins are not made, and decreases sharply after heat treatment. The expression of the transfected gene therefore closely follows that of the endogenous hsp70 genes. This result suggests that a short hsp70 gene segment consisting of 195 base pairs of upstream sequence and a complete RNA leader region contain all the information required for the induced synthesis of proteins during heat shock. More... »

PAGES

116-124

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00328710

DOI

http://dx.doi.org/10.1007/bf00328710

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037637633

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/6441101


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Line", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cloning, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drosophila melanogaster", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Galactosidases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Heat-Shock Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Biosynthesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transfection", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "beta-Galactosidase", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Biochemistry, University of Miami School of Medicine, 33101, Miami, FL, USA", 
          "id": "http://www.grid.ac/institutes/grid.26790.3a", 
          "name": [
            "Department of Biochemistry, University of Miami School of Medicine, 33101, Miami, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lawson", 
        "givenName": "R.", 
        "id": "sg:person.01273352571.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273352571.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biochemistry, University of Miami School of Medicine, 33101, Miami, FL, USA", 
          "id": "http://www.grid.ac/institutes/grid.26790.3a", 
          "name": [
            "Department of Biochemistry, University of Miami School of Medicine, 33101, Miami, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mestril", 
        "givenName": "R.", 
        "id": "sg:person.01341465771.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341465771.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biochemistry, University of Miami School of Medicine, 33101, Miami, FL, USA", 
          "id": "http://www.grid.ac/institutes/grid.26790.3a", 
          "name": [
            "Department of Biochemistry, University of Miami School of Medicine, 33101, Miami, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schiller", 
        "givenName": "P.", 
        "id": "sg:person.01252500635.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252500635.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Biochemistry, University of Miami School of Medicine, 33101, Miami, FL, USA", 
          "id": "http://www.grid.ac/institutes/grid.26790.3a", 
          "name": [
            "Department of Biochemistry, University of Miami School of Medicine, 33101, Miami, FL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Voellmy", 
        "givenName": "R.", 
        "id": "sg:person.0710020557.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710020557.21"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1984-12", 
    "datePublishedReg": "1984-12-01", 
    "description": "Derivatives of Drosophila 70,000 dalton heat shock protein (hsp70) genes were constructed in which all of the hsp70 coding sequence but for the first seven codons had been substituted by a DNA segment coding for E. coli \u03b2-galactosidase. The constructs were capable of directing the synthesis of active \u03b2-galactosidase in COS1 (SV40 transformed African Green Monkey Kidney) cells. The hybrid genes were then used to develop a procedure permitting the introduction of genes and their transient expression in cultured cells of Drosophila melanogaster. Introduction of hybrid genes was achieved by DEAE-dextran-mediated transfection. Substantial gene activity was observed in heat-treated cells only 4 h, maximal activity 24 h after transfection. Various parameters of the transfection/transient expression system including the effects of different 3'nontranslated sequences on hybrid gene expression were investigated in an attempt to provide a useful procedure for studies of the expression of other genes in D. melanogaster cells. To show that promoters which are weaker than that of the hsp70 gene direct the synthesis of easily measurable amounts of \u03b2-galactosidase in D. melanogaster cells, the expression of a hsp84-\u03b2-galactosidase hybrid gene was also examined. Expression of the hsp70 hybrid gene occurs during heat shock, at temperatures at which other proteins are not made, and decreases sharply after heat treatment. The expression of the transfected gene therefore closely follows that of the endogenous hsp70 genes. This result suggests that a short hsp70 gene segment consisting of 195 base pairs of upstream sequence and a complete RNA leader region contain all the information required for the induced synthesis of proteins during heat shock.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf00328710", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2510094", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1297380", 
        "issn": [
          "1617-4615", 
          "1432-1874"
        ], 
        "name": "Molecular Genetics and Genomics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "198"
      }
    ], 
    "keywords": [
      "hybrid gene", 
      "heat shock", 
      "melanogaster cells", 
      "hsp70 gene", 
      "DEAE-dextran-mediated transfection", 
      "heat shock protein genes", 
      "cultured Drosophila cells", 
      "endogenous hsp70 gene", 
      "shock protein genes", 
      "transient expression system", 
      "hybrid gene expression", 
      "introduction of genes", 
      "Drosophila cells", 
      "Drosophila melanogaster", 
      "gene activity", 
      "upstream sequences", 
      "protein gene", 
      "DNA segments", 
      "transient expression", 
      "COS1 cells", 
      "expression system", 
      "gene expression", 
      "leader region", 
      "coli \u03b2", 
      "base pairs", 
      "genes", 
      "heat-treated cells", 
      "gene segments", 
      "cultured cells", 
      "expression", 
      "sequence", 
      "protein", 
      "transfection", 
      "cells", 
      "induced synthesis", 
      "galactosidase", 
      "Drosophila", 
      "melanogaster", 
      "codon", 
      "promoter", 
      "activity 24 h", 
      "HSP70", 
      "synthesis", 
      "segments", 
      "measurable amounts", 
      "constructs", 
      "activity", 
      "region", 
      "pairs", 
      "introduction", 
      "shock", 
      "amount", 
      "study", 
      "effect", 
      "results", 
      "derivatives", 
      "information", 
      "treatment", 
      "system", 
      "attempt", 
      "temperature", 
      "heat treatment", 
      "procedure", 
      "parameters", 
      "useful procedure", 
      "Derivatives of Drosophila", 
      "dalton heat shock protein (hsp70) genes", 
      "Substantial gene activity", 
      "maximal activity 24 h", 
      "transfection/transient expression system", 
      "hsp84-\u03b2-galactosidase hybrid gene", 
      "hsp70 hybrid gene", 
      "short hsp70 gene segment", 
      "hsp70 gene segment", 
      "complete RNA leader region", 
      "RNA leader region", 
      "galactosidase hybrid genes"
    ], 
    "name": "Expression of heat shock-\u03b2-galactosidase hybrid genes in cultured Drosophila cells", 
    "pagination": "116-124", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037637633"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00328710"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "6441101"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00328710", 
      "https://app.dimensions.ai/details/publication/pub.1037637633"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T17:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_164.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf00328710"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00328710'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00328710'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00328710'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00328710'


 

This table displays all metadata directly associated to this object as RDF triples.

202 TRIPLES      21 PREDICATES      114 URIs      106 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00328710 schema:about N0186521c3f0f4813b5c5a9921712244d
2 N15e0bfbc80934587869b3d80c3f91d1c
3 N169ed7c0a75d46109f09fb3ee3931406
4 N60b4ec28b3fa4fe4b8631b75eb8fddba
5 N81d098c471794fbab06fa60d916db922
6 N83eee38068e34b3bb521083eba2f5523
7 Nc4be52b223e74efc881aeb9533c9ab08
8 Ne5fe2048d89a4e02b41c627ef67113e3
9 Nea5fe53fc4ff4bafbe339ae562cc792c
10 Nf18f161f98ad445cbaeb62a6cc6e9688
11 anzsrc-for:06
12 anzsrc-for:0604
13 schema:author N4240a676e70b4b4d816018d98882614e
14 schema:datePublished 1984-12
15 schema:datePublishedReg 1984-12-01
16 schema:description Derivatives of Drosophila 70,000 dalton heat shock protein (hsp70) genes were constructed in which all of the hsp70 coding sequence but for the first seven codons had been substituted by a DNA segment coding for E. coli β-galactosidase. The constructs were capable of directing the synthesis of active β-galactosidase in COS1 (SV40 transformed African Green Monkey Kidney) cells. The hybrid genes were then used to develop a procedure permitting the introduction of genes and their transient expression in cultured cells of Drosophila melanogaster. Introduction of hybrid genes was achieved by DEAE-dextran-mediated transfection. Substantial gene activity was observed in heat-treated cells only 4 h, maximal activity 24 h after transfection. Various parameters of the transfection/transient expression system including the effects of different 3'nontranslated sequences on hybrid gene expression were investigated in an attempt to provide a useful procedure for studies of the expression of other genes in D. melanogaster cells. To show that promoters which are weaker than that of the hsp70 gene direct the synthesis of easily measurable amounts of β-galactosidase in D. melanogaster cells, the expression of a hsp84-β-galactosidase hybrid gene was also examined. Expression of the hsp70 hybrid gene occurs during heat shock, at temperatures at which other proteins are not made, and decreases sharply after heat treatment. The expression of the transfected gene therefore closely follows that of the endogenous hsp70 genes. This result suggests that a short hsp70 gene segment consisting of 195 base pairs of upstream sequence and a complete RNA leader region contain all the information required for the induced synthesis of proteins during heat shock.
17 schema:genre article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N5ca6a9c399ce46029a851e79eb931bec
21 N84b4ba553be940d7803a88d1c454b3f3
22 sg:journal.1297380
23 schema:keywords COS1 cells
24 DEAE-dextran-mediated transfection
25 DNA segments
26 Derivatives of Drosophila
27 Drosophila
28 Drosophila cells
29 Drosophila melanogaster
30 HSP70
31 RNA leader region
32 Substantial gene activity
33 activity
34 activity 24 h
35 amount
36 attempt
37 base pairs
38 cells
39 codon
40 coli β
41 complete RNA leader region
42 constructs
43 cultured Drosophila cells
44 cultured cells
45 dalton heat shock protein (hsp70) genes
46 derivatives
47 effect
48 endogenous hsp70 gene
49 expression
50 expression system
51 galactosidase
52 galactosidase hybrid genes
53 gene activity
54 gene expression
55 gene segments
56 genes
57 heat shock
58 heat shock protein genes
59 heat treatment
60 heat-treated cells
61 hsp70 gene
62 hsp70 gene segment
63 hsp70 hybrid gene
64 hsp84-β-galactosidase hybrid gene
65 hybrid gene
66 hybrid gene expression
67 induced synthesis
68 information
69 introduction
70 introduction of genes
71 leader region
72 maximal activity 24 h
73 measurable amounts
74 melanogaster
75 melanogaster cells
76 pairs
77 parameters
78 procedure
79 promoter
80 protein
81 protein gene
82 region
83 results
84 segments
85 sequence
86 shock
87 shock protein genes
88 short hsp70 gene segment
89 study
90 synthesis
91 system
92 temperature
93 transfection
94 transfection/transient expression system
95 transient expression
96 transient expression system
97 treatment
98 upstream sequences
99 useful procedure
100 schema:name Expression of heat shock-β-galactosidase hybrid genes in cultured Drosophila cells
101 schema:pagination 116-124
102 schema:productId N58edeba25a484f80825469a2e1752195
103 N63a54518cfbb406bb2b7f76b7d5c3299
104 Nbaa42f9fb850448fa07f02923630adde
105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037637633
106 https://doi.org/10.1007/bf00328710
107 schema:sdDatePublished 2021-11-01T17:56
108 schema:sdLicense https://scigraph.springernature.com/explorer/license/
109 schema:sdPublisher Na4584224c3d440f4ad872842073ff63d
110 schema:url https://doi.org/10.1007/bf00328710
111 sgo:license sg:explorer/license/
112 sgo:sdDataset articles
113 rdf:type schema:ScholarlyArticle
114 N0186521c3f0f4813b5c5a9921712244d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Cloning, Molecular
116 rdf:type schema:DefinedTerm
117 N15e0bfbc80934587869b3d80c3f91d1c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Heat-Shock Proteins
119 rdf:type schema:DefinedTerm
120 N169ed7c0a75d46109f09fb3ee3931406 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Animals
122 rdf:type schema:DefinedTerm
123 N4240a676e70b4b4d816018d98882614e rdf:first sg:person.01273352571.02
124 rdf:rest Nd46932a48a5d48969833647436beba62
125 N53a03a53555543a4afa517f32b13ac89 rdf:first sg:person.0710020557.21
126 rdf:rest rdf:nil
127 N58edeba25a484f80825469a2e1752195 schema:name doi
128 schema:value 10.1007/bf00328710
129 rdf:type schema:PropertyValue
130 N5ca6a9c399ce46029a851e79eb931bec schema:issueNumber 1
131 rdf:type schema:PublicationIssue
132 N60b4ec28b3fa4fe4b8631b75eb8fddba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name beta-Galactosidase
134 rdf:type schema:DefinedTerm
135 N63a54518cfbb406bb2b7f76b7d5c3299 schema:name dimensions_id
136 schema:value pub.1037637633
137 rdf:type schema:PropertyValue
138 N81d098c471794fbab06fa60d916db922 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Gene Expression Regulation
140 rdf:type schema:DefinedTerm
141 N83eee38068e34b3bb521083eba2f5523 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Galactosidases
143 rdf:type schema:DefinedTerm
144 N84b4ba553be940d7803a88d1c454b3f3 schema:volumeNumber 198
145 rdf:type schema:PublicationVolume
146 Na3e4e82d485e4e358ec88f361a37fe20 rdf:first sg:person.01252500635.36
147 rdf:rest N53a03a53555543a4afa517f32b13ac89
148 Na4584224c3d440f4ad872842073ff63d schema:name Springer Nature - SN SciGraph project
149 rdf:type schema:Organization
150 Nbaa42f9fb850448fa07f02923630adde schema:name pubmed_id
151 schema:value 6441101
152 rdf:type schema:PropertyValue
153 Nc4be52b223e74efc881aeb9533c9ab08 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Transfection
155 rdf:type schema:DefinedTerm
156 Nd46932a48a5d48969833647436beba62 rdf:first sg:person.01341465771.46
157 rdf:rest Na3e4e82d485e4e358ec88f361a37fe20
158 Ne5fe2048d89a4e02b41c627ef67113e3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Drosophila melanogaster
160 rdf:type schema:DefinedTerm
161 Nea5fe53fc4ff4bafbe339ae562cc792c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Protein Biosynthesis
163 rdf:type schema:DefinedTerm
164 Nf18f161f98ad445cbaeb62a6cc6e9688 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Cell Line
166 rdf:type schema:DefinedTerm
167 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
168 schema:name Biological Sciences
169 rdf:type schema:DefinedTerm
170 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
171 schema:name Genetics
172 rdf:type schema:DefinedTerm
173 sg:grant.2510094 http://pending.schema.org/fundedItem sg:pub.10.1007/bf00328710
174 rdf:type schema:MonetaryGrant
175 sg:journal.1297380 schema:issn 1432-1874
176 1617-4615
177 schema:name Molecular Genetics and Genomics
178 schema:publisher Springer Nature
179 rdf:type schema:Periodical
180 sg:person.01252500635.36 schema:affiliation grid-institutes:grid.26790.3a
181 schema:familyName Schiller
182 schema:givenName P.
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252500635.36
184 rdf:type schema:Person
185 sg:person.01273352571.02 schema:affiliation grid-institutes:grid.26790.3a
186 schema:familyName Lawson
187 schema:givenName R.
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01273352571.02
189 rdf:type schema:Person
190 sg:person.01341465771.46 schema:affiliation grid-institutes:grid.26790.3a
191 schema:familyName Mestril
192 schema:givenName R.
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341465771.46
194 rdf:type schema:Person
195 sg:person.0710020557.21 schema:affiliation grid-institutes:grid.26790.3a
196 schema:familyName Voellmy
197 schema:givenName R.
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710020557.21
199 rdf:type schema:Person
200 grid-institutes:grid.26790.3a schema:alternateName Department of Biochemistry, University of Miami School of Medicine, 33101, Miami, FL, USA
201 schema:name Department of Biochemistry, University of Miami School of Medicine, 33101, Miami, FL, USA
202 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...