Theory and improvements for SNMS depth profiling with INA3 View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1993-01

AUTHORS

S. Uhlemann, P. Weißbrodt, D. Mademann

ABSTRACT

Optimization of SNMS depth profiling using the direct bombardment mode (DBM) is possible by improvement of the ion current density distribution, reduction of bombardment energy and independent choice of current density. A model for primary ion extraction is presented and ion current density distributions have been calculated for different sample holder arrangements. Using the simulation procedure optimal extraction conditions can be predicted for conventional arrangements and suggestions for new ones can be made. The best depth resolution has been obtained using a new extraction arrangement with an additional aperture. More... »

PAGES

374-379

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00321454

DOI

http://dx.doi.org/10.1007/bf00321454

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005145223


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0914", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Resources Engineering and Extractive Metallurgy", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technical University of Darmstadt", 
          "id": "https://www.grid.ac/institutes/grid.6546.1", 
          "name": [
            "Institut f\u00fcr Angewandte Physik, TH Darmstadt, W-6100, Darmstadt, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Uhlemann", 
        "givenName": "S.", 
        "id": "sg:person.01251535576.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251535576.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jenoptik (Germany)", 
          "id": "https://www.grid.ac/institutes/grid.436091.9", 
          "name": [
            "Jenoptik GmbH, Carl-Zeiss-Strasse 1, O-6900, Jena, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wei\u00dfbrodt", 
        "givenName": "P.", 
        "id": "sg:person.013114020305.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013114020305.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jenoptik (Germany)", 
          "id": "https://www.grid.ac/institutes/grid.436091.9", 
          "name": [
            "Jenoptik GmbH, Carl-Zeiss-Strasse 1, O-6900, Jena, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mademann", 
        "givenName": "D.", 
        "id": "sg:person.011271125547.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011271125547.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0039-6028(78)90102-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000778463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0039-6028(78)90102-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000778463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0039-6028(83)90396-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025446672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0039-6028(83)90396-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025446672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00901787", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029548371", 
          "https://doi.org/10.1007/bf00901787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-46499-7_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039354013", 
          "https://doi.org/10.1007/978-3-642-46499-7_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-81516-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047778156", 
          "https://doi.org/10.1007/978-3-642-81516-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-81516-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047778156", 
          "https://doi.org/10.1007/978-3-642-81516-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.24.49", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060444176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.24.49", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060444176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1116/1.572789", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062182836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1116/1.575023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062185070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1116/1.575026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062185073"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1993-01", 
    "datePublishedReg": "1993-01-01", 
    "description": "Optimization of SNMS depth profiling using the direct bombardment mode (DBM) is possible by improvement of the ion current density distribution, reduction of bombardment energy and independent choice of current density. A model for primary ion extraction is presented and ion current density distributions have been calculated for different sample holder arrangements. Using the simulation procedure optimal extraction conditions can be predicted for conventional arrangements and suggestions for new ones can be made. The best depth resolution has been obtained using a new extraction arrangement with an additional aperture.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf00321454", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1327771", 
        "issn": [
          "0937-0633", 
          "1432-1130"
        ], 
        "name": "Journal of Analytical Chemistry", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "346"
      }
    ], 
    "name": "Theory and improvements for SNMS depth profiling with INA3", 
    "pagination": "374-379", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "18838b85724d7fd947219df47da0ac6645c5ee477dd5d09e24526d1929e55229"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00321454"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005145223"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00321454", 
      "https://app.dimensions.ai/details/publication/pub.1005145223"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130831_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF00321454"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00321454'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00321454'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00321454'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00321454'


 

This table displays all metadata directly associated to this object as RDF triples.

108 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00321454 schema:about anzsrc-for:09
2 anzsrc-for:0914
3 schema:author N8c8b98b6ba1d439f8aa7b9abbec2e3a3
4 schema:citation sg:pub.10.1007/978-3-642-46499-7_4
5 sg:pub.10.1007/978-3-642-81516-4
6 sg:pub.10.1007/bf00901787
7 https://doi.org/10.1016/0039-6028(78)90102-4
8 https://doi.org/10.1016/0039-6028(83)90396-5
9 https://doi.org/10.1103/physrev.24.49
10 https://doi.org/10.1116/1.572789
11 https://doi.org/10.1116/1.575023
12 https://doi.org/10.1116/1.575026
13 schema:datePublished 1993-01
14 schema:datePublishedReg 1993-01-01
15 schema:description Optimization of SNMS depth profiling using the direct bombardment mode (DBM) is possible by improvement of the ion current density distribution, reduction of bombardment energy and independent choice of current density. A model for primary ion extraction is presented and ion current density distributions have been calculated for different sample holder arrangements. Using the simulation procedure optimal extraction conditions can be predicted for conventional arrangements and suggestions for new ones can be made. The best depth resolution has been obtained using a new extraction arrangement with an additional aperture.
16 schema:genre research_article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf N162cd44df133486e870dbc82ef5bbb04
20 Nb75ffa2bbdc84c8e912945181e6602d7
21 sg:journal.1327771
22 schema:name Theory and improvements for SNMS depth profiling with INA3
23 schema:pagination 374-379
24 schema:productId N582f6deeb8be42b7a142baa06fddd6ef
25 Nef1e93bf5283442ca9b6c874ced20d38
26 Nf971862e23804e7ebc23997d28e98a28
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005145223
28 https://doi.org/10.1007/bf00321454
29 schema:sdDatePublished 2019-04-11T14:02
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher Nddeb45770df74137b2a5e5adfb699184
32 schema:url http://link.springer.com/10.1007/BF00321454
33 sgo:license sg:explorer/license/
34 sgo:sdDataset articles
35 rdf:type schema:ScholarlyArticle
36 N162cd44df133486e870dbc82ef5bbb04 schema:volumeNumber 346
37 rdf:type schema:PublicationVolume
38 N582f6deeb8be42b7a142baa06fddd6ef schema:name dimensions_id
39 schema:value pub.1005145223
40 rdf:type schema:PropertyValue
41 N7593b02a3bad4c83bdb476af4b311ce3 rdf:first sg:person.011271125547.43
42 rdf:rest rdf:nil
43 N8c8b98b6ba1d439f8aa7b9abbec2e3a3 rdf:first sg:person.01251535576.61
44 rdf:rest Ne54e2bc9f74147caa4be251f575c0bd3
45 Nb75ffa2bbdc84c8e912945181e6602d7 schema:issueNumber 1-3
46 rdf:type schema:PublicationIssue
47 Nddeb45770df74137b2a5e5adfb699184 schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 Ne54e2bc9f74147caa4be251f575c0bd3 rdf:first sg:person.013114020305.10
50 rdf:rest N7593b02a3bad4c83bdb476af4b311ce3
51 Nef1e93bf5283442ca9b6c874ced20d38 schema:name readcube_id
52 schema:value 18838b85724d7fd947219df47da0ac6645c5ee477dd5d09e24526d1929e55229
53 rdf:type schema:PropertyValue
54 Nf971862e23804e7ebc23997d28e98a28 schema:name doi
55 schema:value 10.1007/bf00321454
56 rdf:type schema:PropertyValue
57 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
58 schema:name Engineering
59 rdf:type schema:DefinedTerm
60 anzsrc-for:0914 schema:inDefinedTermSet anzsrc-for:
61 schema:name Resources Engineering and Extractive Metallurgy
62 rdf:type schema:DefinedTerm
63 sg:journal.1327771 schema:issn 0937-0633
64 1432-1130
65 schema:name Journal of Analytical Chemistry
66 rdf:type schema:Periodical
67 sg:person.011271125547.43 schema:affiliation https://www.grid.ac/institutes/grid.436091.9
68 schema:familyName Mademann
69 schema:givenName D.
70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011271125547.43
71 rdf:type schema:Person
72 sg:person.01251535576.61 schema:affiliation https://www.grid.ac/institutes/grid.6546.1
73 schema:familyName Uhlemann
74 schema:givenName S.
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251535576.61
76 rdf:type schema:Person
77 sg:person.013114020305.10 schema:affiliation https://www.grid.ac/institutes/grid.436091.9
78 schema:familyName Weißbrodt
79 schema:givenName P.
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013114020305.10
81 rdf:type schema:Person
82 sg:pub.10.1007/978-3-642-46499-7_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039354013
83 https://doi.org/10.1007/978-3-642-46499-7_4
84 rdf:type schema:CreativeWork
85 sg:pub.10.1007/978-3-642-81516-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047778156
86 https://doi.org/10.1007/978-3-642-81516-4
87 rdf:type schema:CreativeWork
88 sg:pub.10.1007/bf00901787 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029548371
89 https://doi.org/10.1007/bf00901787
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/0039-6028(78)90102-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000778463
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/0039-6028(83)90396-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025446672
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1103/physrev.24.49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060444176
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1116/1.572789 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062182836
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1116/1.575023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062185070
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1116/1.575026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062185073
102 rdf:type schema:CreativeWork
103 https://www.grid.ac/institutes/grid.436091.9 schema:alternateName Jenoptik (Germany)
104 schema:name Jenoptik GmbH, Carl-Zeiss-Strasse 1, O-6900, Jena, Germany
105 rdf:type schema:Organization
106 https://www.grid.ac/institutes/grid.6546.1 schema:alternateName Technical University of Darmstadt
107 schema:name Institut für Angewandte Physik, TH Darmstadt, W-6100, Darmstadt, Germany
108 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...