Large deviations for Gibbs random fields View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1988-03

AUTHORS

Stefano Olla

ABSTRACT

A large deviation principle for Gibbs random fields on Zd is proven and a corresponding large deviations proof of the Gibbs variational formula is given. A generalization of the Lanford theory of large deviations is also obtained.

PAGES

343-357

References to SciGraph publications

  • 1988-12. Large deviations and stochastic homogenization in ANNALI DI MATEMATICA PURA ED APPLICATA (1923 -)
  • 1987-09. Large deviations for almost markovian processes in PROBABILITY THEORY AND RELATED FIELDS
  • 1985-03. Large deviations for stationary Gaussian processes in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1985. Entropy, Large Deviations, and Statistical Mechanics in NONE
  • 1973-09. On entropy and information gain in random fields in PROBABILITY THEORY AND RELATED FIELDS
  • 1984. An Introduction to the Theory of Large Deviations in NONE
  • Journal

    TITLE

    Probability Theory and Related Fields

    ISSUE

    3

    VOLUME

    77

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf00319293

    DOI

    http://dx.doi.org/10.1007/bf00319293

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1047157229


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "author": [
          {
            "affiliation": {
              "alternateName": "Rutgers University", 
              "id": "https://www.grid.ac/institutes/grid.430387.b", 
              "name": [
                "Department of Mathematics, Rutgers University, 08903, New Brunswick, NJ, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Olla", 
            "givenName": "Stefano", 
            "id": "sg:person.07737317031.71", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07737317031.71"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1002/cpa.3160190303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007522690"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cpa.3160190303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007522690"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cpa.3160280102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012152274"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cpa.3160280102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012152274"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/17442508708833446", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014288740"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4613-8533-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017675046", 
              "https://doi.org/10.1007/978-1-4613-8533-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4613-8533-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017675046", 
              "https://doi.org/10.1007/978-1-4613-8533-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01206186", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022077538", 
              "https://doi.org/10.1007/bf01206186"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01206186", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022077538", 
              "https://doi.org/10.1007/bf01206186"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01297493", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022283025", 
              "https://doi.org/10.1007/bf01297493"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01297493", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022283025", 
              "https://doi.org/10.1007/bf01297493"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4613-8514-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029911770", 
              "https://doi.org/10.1007/978-1-4613-8514-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4613-8514-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029911770", 
              "https://doi.org/10.1007/978-1-4613-8514-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00532723", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034166042", 
              "https://doi.org/10.1007/bf00532723"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01762793", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045833129", 
              "https://doi.org/10.1007/bf01762793"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01762793", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045833129", 
              "https://doi.org/10.1007/bf01762793"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/aop/1176991671", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064404185"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/aop/1176992813", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064404491"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/1.9781611970241", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098556617"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1988-03", 
        "datePublishedReg": "1988-03-01", 
        "description": "A large deviation principle for Gibbs random fields on Zd is proven and a corresponding large deviations proof of the Gibbs variational formula is given. A generalization of the Lanford theory of large deviations is also obtained.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf00319293", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1053886", 
            "issn": [
              "0178-8051", 
              "1432-2064"
            ], 
            "name": "Probability Theory and Related Fields", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "77"
          }
        ], 
        "name": "Large deviations for Gibbs random fields", 
        "pagination": "343-357", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "e0a419c0675511c4a7a0860aef9119a248e14eea252a8d258a65cc6df26a673b"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf00319293"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1047157229"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf00319293", 
          "https://app.dimensions.ai/details/publication/pub.1047157229"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:53", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130808_00000004.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF00319293"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00319293'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00319293'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00319293'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00319293'


     

    This table displays all metadata directly associated to this object as RDF triples.

    95 TRIPLES      20 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf00319293 schema:author N944cf2af2e16440fa2663346e3608823
    2 schema:citation sg:pub.10.1007/978-1-4613-8514-1
    3 sg:pub.10.1007/978-1-4613-8533-2
    4 sg:pub.10.1007/bf00532723
    5 sg:pub.10.1007/bf01206186
    6 sg:pub.10.1007/bf01297493
    7 sg:pub.10.1007/bf01762793
    8 https://doi.org/10.1002/cpa.3160190303
    9 https://doi.org/10.1002/cpa.3160280102
    10 https://doi.org/10.1080/17442508708833446
    11 https://doi.org/10.1137/1.9781611970241
    12 https://doi.org/10.1214/aop/1176991671
    13 https://doi.org/10.1214/aop/1176992813
    14 schema:datePublished 1988-03
    15 schema:datePublishedReg 1988-03-01
    16 schema:description A large deviation principle for Gibbs random fields on Zd is proven and a corresponding large deviations proof of the Gibbs variational formula is given. A generalization of the Lanford theory of large deviations is also obtained.
    17 schema:genre research_article
    18 schema:inLanguage en
    19 schema:isAccessibleForFree false
    20 schema:isPartOf N7e3f5db3af7d4487b272a2bbe2a1e896
    21 Ne7c61e427e414f969ee86097818a3ca0
    22 sg:journal.1053886
    23 schema:name Large deviations for Gibbs random fields
    24 schema:pagination 343-357
    25 schema:productId N36c895a785f54f3eabf80ddba4598c67
    26 N843d5dd20f7245ad93b14c4e5f9c7096
    27 Nc844ef692b92470193dd0dbb38e554c7
    28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047157229
    29 https://doi.org/10.1007/bf00319293
    30 schema:sdDatePublished 2019-04-11T13:53
    31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    32 schema:sdPublisher N971e91ef4e664dc6b453cc83b2f4af30
    33 schema:url http://link.springer.com/10.1007/BF00319293
    34 sgo:license sg:explorer/license/
    35 sgo:sdDataset articles
    36 rdf:type schema:ScholarlyArticle
    37 N36c895a785f54f3eabf80ddba4598c67 schema:name doi
    38 schema:value 10.1007/bf00319293
    39 rdf:type schema:PropertyValue
    40 N7e3f5db3af7d4487b272a2bbe2a1e896 schema:volumeNumber 77
    41 rdf:type schema:PublicationVolume
    42 N843d5dd20f7245ad93b14c4e5f9c7096 schema:name dimensions_id
    43 schema:value pub.1047157229
    44 rdf:type schema:PropertyValue
    45 N944cf2af2e16440fa2663346e3608823 rdf:first sg:person.07737317031.71
    46 rdf:rest rdf:nil
    47 N971e91ef4e664dc6b453cc83b2f4af30 schema:name Springer Nature - SN SciGraph project
    48 rdf:type schema:Organization
    49 Nc844ef692b92470193dd0dbb38e554c7 schema:name readcube_id
    50 schema:value e0a419c0675511c4a7a0860aef9119a248e14eea252a8d258a65cc6df26a673b
    51 rdf:type schema:PropertyValue
    52 Ne7c61e427e414f969ee86097818a3ca0 schema:issueNumber 3
    53 rdf:type schema:PublicationIssue
    54 sg:journal.1053886 schema:issn 0178-8051
    55 1432-2064
    56 schema:name Probability Theory and Related Fields
    57 rdf:type schema:Periodical
    58 sg:person.07737317031.71 schema:affiliation https://www.grid.ac/institutes/grid.430387.b
    59 schema:familyName Olla
    60 schema:givenName Stefano
    61 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07737317031.71
    62 rdf:type schema:Person
    63 sg:pub.10.1007/978-1-4613-8514-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029911770
    64 https://doi.org/10.1007/978-1-4613-8514-1
    65 rdf:type schema:CreativeWork
    66 sg:pub.10.1007/978-1-4613-8533-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017675046
    67 https://doi.org/10.1007/978-1-4613-8533-2
    68 rdf:type schema:CreativeWork
    69 sg:pub.10.1007/bf00532723 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034166042
    70 https://doi.org/10.1007/bf00532723
    71 rdf:type schema:CreativeWork
    72 sg:pub.10.1007/bf01206186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022077538
    73 https://doi.org/10.1007/bf01206186
    74 rdf:type schema:CreativeWork
    75 sg:pub.10.1007/bf01297493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022283025
    76 https://doi.org/10.1007/bf01297493
    77 rdf:type schema:CreativeWork
    78 sg:pub.10.1007/bf01762793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045833129
    79 https://doi.org/10.1007/bf01762793
    80 rdf:type schema:CreativeWork
    81 https://doi.org/10.1002/cpa.3160190303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007522690
    82 rdf:type schema:CreativeWork
    83 https://doi.org/10.1002/cpa.3160280102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012152274
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.1080/17442508708833446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014288740
    86 rdf:type schema:CreativeWork
    87 https://doi.org/10.1137/1.9781611970241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098556617
    88 rdf:type schema:CreativeWork
    89 https://doi.org/10.1214/aop/1176991671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064404185
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.1214/aop/1176992813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064404491
    92 rdf:type schema:CreativeWork
    93 https://www.grid.ac/institutes/grid.430387.b schema:alternateName Rutgers University
    94 schema:name Department of Mathematics, Rutgers University, 08903, New Brunswick, NJ, USA
    95 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...