Large deviations for Gibbs random fields View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1988-03

AUTHORS

Stefano Olla

ABSTRACT

A large deviation principle for Gibbs random fields on Zd is proven and a corresponding large deviations proof of the Gibbs variational formula is given. A generalization of the Lanford theory of large deviations is also obtained.

PAGES

343-357

References to SciGraph publications

Journal

TITLE

Probability Theory and Related Fields

ISSUE

3

VOLUME

77

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00319293

DOI

http://dx.doi.org/10.1007/bf00319293

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047157229


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "Rutgers University", 
          "id": "https://www.grid.ac/institutes/grid.430387.b", 
          "name": [
            "Department of Mathematics, Rutgers University, 08903, New Brunswick, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Olla", 
        "givenName": "Stefano", 
        "id": "sg:person.07737317031.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07737317031.71"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/cpa.3160190303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007522690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160190303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007522690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160280102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012152274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160280102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012152274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/17442508708833446", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014288740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-8533-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017675046", 
          "https://doi.org/10.1007/978-1-4613-8533-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-8533-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017675046", 
          "https://doi.org/10.1007/978-1-4613-8533-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01206186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022077538", 
          "https://doi.org/10.1007/bf01206186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01206186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022077538", 
          "https://doi.org/10.1007/bf01206186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01297493", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022283025", 
          "https://doi.org/10.1007/bf01297493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01297493", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022283025", 
          "https://doi.org/10.1007/bf01297493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-8514-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029911770", 
          "https://doi.org/10.1007/978-1-4613-8514-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-8514-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029911770", 
          "https://doi.org/10.1007/978-1-4613-8514-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00532723", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034166042", 
          "https://doi.org/10.1007/bf00532723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01762793", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045833129", 
          "https://doi.org/10.1007/bf01762793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01762793", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045833129", 
          "https://doi.org/10.1007/bf01762793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aop/1176991671", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064404185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aop/1176992813", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064404491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611970241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098556617"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1988-03", 
    "datePublishedReg": "1988-03-01", 
    "description": "A large deviation principle for Gibbs random fields on Zd is proven and a corresponding large deviations proof of the Gibbs variational formula is given. A generalization of the Lanford theory of large deviations is also obtained.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf00319293", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1053886", 
        "issn": [
          "0178-8051", 
          "1432-2064"
        ], 
        "name": "Probability Theory and Related Fields", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "77"
      }
    ], 
    "name": "Large deviations for Gibbs random fields", 
    "pagination": "343-357", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e0a419c0675511c4a7a0860aef9119a248e14eea252a8d258a65cc6df26a673b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00319293"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047157229"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00319293", 
      "https://app.dimensions.ai/details/publication/pub.1047157229"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130808_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF00319293"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00319293'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00319293'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00319293'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00319293'


 

This table displays all metadata directly associated to this object as RDF triples.

95 TRIPLES      20 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00319293 schema:author N5a2ef549ffe7443ca151e3e02c42e947
2 schema:citation sg:pub.10.1007/978-1-4613-8514-1
3 sg:pub.10.1007/978-1-4613-8533-2
4 sg:pub.10.1007/bf00532723
5 sg:pub.10.1007/bf01206186
6 sg:pub.10.1007/bf01297493
7 sg:pub.10.1007/bf01762793
8 https://doi.org/10.1002/cpa.3160190303
9 https://doi.org/10.1002/cpa.3160280102
10 https://doi.org/10.1080/17442508708833446
11 https://doi.org/10.1137/1.9781611970241
12 https://doi.org/10.1214/aop/1176991671
13 https://doi.org/10.1214/aop/1176992813
14 schema:datePublished 1988-03
15 schema:datePublishedReg 1988-03-01
16 schema:description A large deviation principle for Gibbs random fields on Zd is proven and a corresponding large deviations proof of the Gibbs variational formula is given. A generalization of the Lanford theory of large deviations is also obtained.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N1bb520ec02cf4ca49e782504a3b33c8d
21 N727f01a8b21d49ce82f6f3600348e27c
22 sg:journal.1053886
23 schema:name Large deviations for Gibbs random fields
24 schema:pagination 343-357
25 schema:productId N21b71d320ea7466cbeff38a362100777
26 N254d949a4fe34152b86d169a9d2ab04c
27 N8b4d8066cf2d42c4a527e9345da7fb24
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047157229
29 https://doi.org/10.1007/bf00319293
30 schema:sdDatePublished 2019-04-11T13:53
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N1be22a4f375645809a024f18b6b5cfaa
33 schema:url http://link.springer.com/10.1007/BF00319293
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N1bb520ec02cf4ca49e782504a3b33c8d schema:volumeNumber 77
38 rdf:type schema:PublicationVolume
39 N1be22a4f375645809a024f18b6b5cfaa schema:name Springer Nature - SN SciGraph project
40 rdf:type schema:Organization
41 N21b71d320ea7466cbeff38a362100777 schema:name dimensions_id
42 schema:value pub.1047157229
43 rdf:type schema:PropertyValue
44 N254d949a4fe34152b86d169a9d2ab04c schema:name readcube_id
45 schema:value e0a419c0675511c4a7a0860aef9119a248e14eea252a8d258a65cc6df26a673b
46 rdf:type schema:PropertyValue
47 N5a2ef549ffe7443ca151e3e02c42e947 rdf:first sg:person.07737317031.71
48 rdf:rest rdf:nil
49 N727f01a8b21d49ce82f6f3600348e27c schema:issueNumber 3
50 rdf:type schema:PublicationIssue
51 N8b4d8066cf2d42c4a527e9345da7fb24 schema:name doi
52 schema:value 10.1007/bf00319293
53 rdf:type schema:PropertyValue
54 sg:journal.1053886 schema:issn 0178-8051
55 1432-2064
56 schema:name Probability Theory and Related Fields
57 rdf:type schema:Periodical
58 sg:person.07737317031.71 schema:affiliation https://www.grid.ac/institutes/grid.430387.b
59 schema:familyName Olla
60 schema:givenName Stefano
61 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07737317031.71
62 rdf:type schema:Person
63 sg:pub.10.1007/978-1-4613-8514-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029911770
64 https://doi.org/10.1007/978-1-4613-8514-1
65 rdf:type schema:CreativeWork
66 sg:pub.10.1007/978-1-4613-8533-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017675046
67 https://doi.org/10.1007/978-1-4613-8533-2
68 rdf:type schema:CreativeWork
69 sg:pub.10.1007/bf00532723 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034166042
70 https://doi.org/10.1007/bf00532723
71 rdf:type schema:CreativeWork
72 sg:pub.10.1007/bf01206186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022077538
73 https://doi.org/10.1007/bf01206186
74 rdf:type schema:CreativeWork
75 sg:pub.10.1007/bf01297493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022283025
76 https://doi.org/10.1007/bf01297493
77 rdf:type schema:CreativeWork
78 sg:pub.10.1007/bf01762793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045833129
79 https://doi.org/10.1007/bf01762793
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1002/cpa.3160190303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007522690
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1002/cpa.3160280102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012152274
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1080/17442508708833446 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014288740
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1137/1.9781611970241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098556617
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1214/aop/1176991671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064404185
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1214/aop/1176992813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064404491
92 rdf:type schema:CreativeWork
93 https://www.grid.ac/institutes/grid.430387.b schema:alternateName Rutgers University
94 schema:name Department of Mathematics, Rutgers University, 08903, New Brunswick, NJ, USA
95 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...