Coordinates transformation and learning control for visually-guided voluntary movement with iteration: A Newton-like method in a function space View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1988-08

AUTHORS

M. Kawato, M. Isobe, Y. Maeda, R. Suzuki

ABSTRACT

In order to control visually-guided voluntary movements, the central nervous system (CNS) must solve the following three computational problems at different levels: (1) determination of a desired trajectory in the visual coordinates, (2) transformation of the coordinates of the desired trajectory to the body coordinates and (3) generation of motor command. In this paper, the second and the third problems are treated at computational, representational and hardware levels of Marr. We first study the problems at the computational level, and then propose an iterative learning scheme as a possible algorithm. This is a trial and error type learning such as repetitive training of golf swing. The amount of motor command needed to coordinate activities of many muscles is not determined at once, but in a step-wise, trial and error fashion in the course of a set of repetitions. Actually, the motor command in the (n + 1)-th iteration is a sum of the motor command in the n-th iteration plus two modification terms which are, respectively, proportional to acceleration and speed errors between the desired trajectory and the realized trajectory in the n-th iteration. We mathematically formulate this iterative learning control as a Newton-like method in functional spaces and prove its convergence under appropriate mathematical conditions with use of dynamical system theory and functional analysis. Computer simulations of this iterative learning control of a robotic manipulator in the body or visual coordinates are shown. Finally, we propose that areas 2, 5, and 7 of the sensory association cortex are possible sites of this learning control. Further we propose neural network model which acquires transformation matrices from acceleration or velocity to motor command, which are used in these schemes. More... »

PAGES

161-177

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00318008

DOI

http://dx.doi.org/10.1007/bf00318008

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043387128

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/3179342


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Central Nervous System", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cybernetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Learning", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Neurological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Movement", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Vision, Ocular", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Osaka University", 
          "id": "https://www.grid.ac/institutes/grid.136593.b", 
          "name": [
            "Department of Biophysical Engineering, Faculty of Engineering Science, Osaka University, 560, Toyonaka, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kawato", 
        "givenName": "M.", 
        "id": "sg:person.01230705277.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230705277.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Osaka University", 
          "id": "https://www.grid.ac/institutes/grid.136593.b", 
          "name": [
            "Department of Biophysical Engineering, Faculty of Engineering Science, Osaka University, 560, Toyonaka, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Isobe", 
        "givenName": "M.", 
        "id": "sg:person.015421765205.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015421765205.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Osaka University", 
          "id": "https://www.grid.ac/institutes/grid.136593.b", 
          "name": [
            "Department of Biophysical Engineering, Faculty of Engineering Science, Osaka University, 560, Toyonaka, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maeda", 
        "givenName": "Y.", 
        "id": "sg:person.01226735345.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01226735345.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Osaka University", 
          "id": "https://www.grid.ac/institutes/grid.136593.b", 
          "name": [
            "Department of Biophysical Engineering, Faculty of Engineering Science, Osaka University, 560, Toyonaka, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suzuki", 
        "givenName": "R.", 
        "id": "sg:person.013656713222.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013656713222.33"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02166685", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002837332", 
          "https://doi.org/10.1007/bf02166685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02166685", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002837332", 
          "https://doi.org/10.1007/bf02166685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00364149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004224027", 
          "https://doi.org/10.1007/bf00364149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0166-2236(82)90111-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018540242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0166-2236(82)90111-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018540242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00355690", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021875500", 
          "https://doi.org/10.1007/bf00355690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.9746/sicetr1965.19.421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023064797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1163/156855389x00127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024865668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-0102(86)90056-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026141185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-0102(86)90056-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026141185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00272461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027504824", 
          "https://doi.org/10.1007/bf00272461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00272461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027504824", 
          "https://doi.org/10.1007/bf00272461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.9746/sicetr1965.20.453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033051418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7210/jrsj.2.480", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037403481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-0270(81)90063-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041236369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-0270(81)90063-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041236369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00365229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045888190", 
          "https://doi.org/10.1007/bf00365229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-4536-0_12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049837635", 
          "https://doi.org/10.1007/978-1-4612-4536-0_12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.05-07-01688.1985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1080085642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.1975.38.4.871", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082644917"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1988-08", 
    "datePublishedReg": "1988-08-01", 
    "description": "In order to control visually-guided voluntary movements, the central nervous system (CNS) must solve the following three computational problems at different levels: (1) determination of a desired trajectory in the visual coordinates, (2) transformation of the coordinates of the desired trajectory to the body coordinates and (3) generation of motor command. In this paper, the second and the third problems are treated at computational, representational and hardware levels of Marr. We first study the problems at the computational level, and then propose an iterative learning scheme as a possible algorithm. This is a trial and error type learning such as repetitive training of golf swing. The amount of motor command needed to coordinate activities of many muscles is not determined at once, but in a step-wise, trial and error fashion in the course of a set of repetitions. Actually, the motor command in the (n + 1)-th iteration is a sum of the motor command in the n-th iteration plus two modification terms which are, respectively, proportional to acceleration and speed errors between the desired trajectory and the realized trajectory in the n-th iteration. We mathematically formulate this iterative learning control as a Newton-like method in functional spaces and prove its convergence under appropriate mathematical conditions with use of dynamical system theory and functional analysis. Computer simulations of this iterative learning control of a robotic manipulator in the body or visual coordinates are shown. Finally, we propose that areas 2, 5, and 7 of the sensory association cortex are possible sites of this learning control. Further we propose neural network model which acquires transformation matrices from acceleration or velocity to motor command, which are used in these schemes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf00318008", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1081741", 
        "issn": [
          "0340-1200", 
          "1432-0770"
        ], 
        "name": "Biological Cybernetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "59"
      }
    ], 
    "name": "Coordinates transformation and learning control for visually-guided voluntary movement with iteration: A Newton-like method in a function space", 
    "pagination": "161-177", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ceab827bf995cade461f7c8fbf55838ac119af4bddde94ef96bc8455836c7c49"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "3179342"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7502533"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00318008"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043387128"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00318008", 
      "https://app.dimensions.ai/details/publication/pub.1043387128"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130823_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF00318008"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00318008'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00318008'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00318008'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00318008'


 

This table displays all metadata directly associated to this object as RDF triples.

177 TRIPLES      21 PREDICATES      53 URIs      30 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00318008 schema:about N0431fca4e48945d9b48014142adf2c61
2 N1f1277c736b04729bc3f21dbc2049b5d
3 N396c5e268d7d4bbe9fac1fadb3c48961
4 N3ded477e52504e8ca93e5421cbadb9a5
5 Na87c42f0e2894a3c8da390bc148f327f
6 Nb09c97659f47450a9922796865034a7e
7 Nd46562b74bda4079aca1fe466820578e
8 Ne952309c6c4f48f69ede2a581b2e6806
9 Nf65216286658470c8819b30ea140472c
10 anzsrc-for:08
11 anzsrc-for:0801
12 schema:author N52b6d94bc6a54395b3c8ebb1583b25e1
13 schema:citation sg:pub.10.1007/978-1-4612-4536-0_12
14 sg:pub.10.1007/bf00272461
15 sg:pub.10.1007/bf00355690
16 sg:pub.10.1007/bf00364149
17 sg:pub.10.1007/bf00365229
18 sg:pub.10.1007/bf02166685
19 https://doi.org/10.1016/0165-0270(81)90063-7
20 https://doi.org/10.1016/0166-2236(82)90111-4
21 https://doi.org/10.1016/0168-0102(86)90056-8
22 https://doi.org/10.1152/jn.1975.38.4.871
23 https://doi.org/10.1163/156855389x00127
24 https://doi.org/10.1523/jneurosci.05-07-01688.1985
25 https://doi.org/10.7210/jrsj.2.480
26 https://doi.org/10.9746/sicetr1965.19.421
27 https://doi.org/10.9746/sicetr1965.20.453
28 schema:datePublished 1988-08
29 schema:datePublishedReg 1988-08-01
30 schema:description In order to control visually-guided voluntary movements, the central nervous system (CNS) must solve the following three computational problems at different levels: (1) determination of a desired trajectory in the visual coordinates, (2) transformation of the coordinates of the desired trajectory to the body coordinates and (3) generation of motor command. In this paper, the second and the third problems are treated at computational, representational and hardware levels of Marr. We first study the problems at the computational level, and then propose an iterative learning scheme as a possible algorithm. This is a trial and error type learning such as repetitive training of golf swing. The amount of motor command needed to coordinate activities of many muscles is not determined at once, but in a step-wise, trial and error fashion in the course of a set of repetitions. Actually, the motor command in the (n + 1)-th iteration is a sum of the motor command in the n-th iteration plus two modification terms which are, respectively, proportional to acceleration and speed errors between the desired trajectory and the realized trajectory in the n-th iteration. We mathematically formulate this iterative learning control as a Newton-like method in functional spaces and prove its convergence under appropriate mathematical conditions with use of dynamical system theory and functional analysis. Computer simulations of this iterative learning control of a robotic manipulator in the body or visual coordinates are shown. Finally, we propose that areas 2, 5, and 7 of the sensory association cortex are possible sites of this learning control. Further we propose neural network model which acquires transformation matrices from acceleration or velocity to motor command, which are used in these schemes.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree false
34 schema:isPartOf N72daf93e212a475689370737b840f4cc
35 Naa6fd510ca9b4dca8c07f7fe27e5c038
36 sg:journal.1081741
37 schema:name Coordinates transformation and learning control for visually-guided voluntary movement with iteration: A Newton-like method in a function space
38 schema:pagination 161-177
39 schema:productId N10eaba2d9d024da2817d1c52ad5a337c
40 N3069613aa038487386b8e18d6ac32bf5
41 N5d7c9a3592b24b40aa1c17388b5420ba
42 N981cc717c70f40d8b17a24fe6e289951
43 Ned62e1df835d4236bb03acdef4480085
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043387128
45 https://doi.org/10.1007/bf00318008
46 schema:sdDatePublished 2019-04-11T13:59
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher Nc3862a1cae6442d286286617ab9ea34f
49 schema:url http://link.springer.com/10.1007/BF00318008
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N0431fca4e48945d9b48014142adf2c61 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
54 schema:name Computer Simulation
55 rdf:type schema:DefinedTerm
56 N10eaba2d9d024da2817d1c52ad5a337c schema:name nlm_unique_id
57 schema:value 7502533
58 rdf:type schema:PropertyValue
59 N1f1277c736b04729bc3f21dbc2049b5d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
60 schema:name Central Nervous System
61 rdf:type schema:DefinedTerm
62 N3069613aa038487386b8e18d6ac32bf5 schema:name readcube_id
63 schema:value ceab827bf995cade461f7c8fbf55838ac119af4bddde94ef96bc8455836c7c49
64 rdf:type schema:PropertyValue
65 N396c5e268d7d4bbe9fac1fadb3c48961 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Humans
67 rdf:type schema:DefinedTerm
68 N3ded477e52504e8ca93e5421cbadb9a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
69 schema:name Models, Theoretical
70 rdf:type schema:DefinedTerm
71 N52b6d94bc6a54395b3c8ebb1583b25e1 rdf:first sg:person.01230705277.42
72 rdf:rest N6d3c4a16e26e49d7a784a4ab714c061c
73 N5d7c9a3592b24b40aa1c17388b5420ba schema:name dimensions_id
74 schema:value pub.1043387128
75 rdf:type schema:PropertyValue
76 N6d3c4a16e26e49d7a784a4ab714c061c rdf:first sg:person.015421765205.06
77 rdf:rest Na7e6da9070ac41cb86858f6781185ed4
78 N72daf93e212a475689370737b840f4cc schema:volumeNumber 59
79 rdf:type schema:PublicationVolume
80 N981cc717c70f40d8b17a24fe6e289951 schema:name doi
81 schema:value 10.1007/bf00318008
82 rdf:type schema:PropertyValue
83 Na7e6da9070ac41cb86858f6781185ed4 rdf:first sg:person.01226735345.37
84 rdf:rest Nf70e6bf8a7a74e06aed8a845bd374c12
85 Na87c42f0e2894a3c8da390bc148f327f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Learning
87 rdf:type schema:DefinedTerm
88 Naa6fd510ca9b4dca8c07f7fe27e5c038 schema:issueNumber 3
89 rdf:type schema:PublicationIssue
90 Nb09c97659f47450a9922796865034a7e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Vision, Ocular
92 rdf:type schema:DefinedTerm
93 Nc3862a1cae6442d286286617ab9ea34f schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 Nd46562b74bda4079aca1fe466820578e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Models, Neurological
97 rdf:type schema:DefinedTerm
98 Ne952309c6c4f48f69ede2a581b2e6806 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Cybernetics
100 rdf:type schema:DefinedTerm
101 Ned62e1df835d4236bb03acdef4480085 schema:name pubmed_id
102 schema:value 3179342
103 rdf:type schema:PropertyValue
104 Nf65216286658470c8819b30ea140472c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Movement
106 rdf:type schema:DefinedTerm
107 Nf70e6bf8a7a74e06aed8a845bd374c12 rdf:first sg:person.013656713222.33
108 rdf:rest rdf:nil
109 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
110 schema:name Information and Computing Sciences
111 rdf:type schema:DefinedTerm
112 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
113 schema:name Artificial Intelligence and Image Processing
114 rdf:type schema:DefinedTerm
115 sg:journal.1081741 schema:issn 0340-1200
116 1432-0770
117 schema:name Biological Cybernetics
118 rdf:type schema:Periodical
119 sg:person.01226735345.37 schema:affiliation https://www.grid.ac/institutes/grid.136593.b
120 schema:familyName Maeda
121 schema:givenName Y.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01226735345.37
123 rdf:type schema:Person
124 sg:person.01230705277.42 schema:affiliation https://www.grid.ac/institutes/grid.136593.b
125 schema:familyName Kawato
126 schema:givenName M.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230705277.42
128 rdf:type schema:Person
129 sg:person.013656713222.33 schema:affiliation https://www.grid.ac/institutes/grid.136593.b
130 schema:familyName Suzuki
131 schema:givenName R.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013656713222.33
133 rdf:type schema:Person
134 sg:person.015421765205.06 schema:affiliation https://www.grid.ac/institutes/grid.136593.b
135 schema:familyName Isobe
136 schema:givenName M.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015421765205.06
138 rdf:type schema:Person
139 sg:pub.10.1007/978-1-4612-4536-0_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049837635
140 https://doi.org/10.1007/978-1-4612-4536-0_12
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/bf00272461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027504824
143 https://doi.org/10.1007/bf00272461
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/bf00355690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021875500
146 https://doi.org/10.1007/bf00355690
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/bf00364149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004224027
149 https://doi.org/10.1007/bf00364149
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/bf00365229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045888190
152 https://doi.org/10.1007/bf00365229
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/bf02166685 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002837332
155 https://doi.org/10.1007/bf02166685
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/0165-0270(81)90063-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041236369
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/0166-2236(82)90111-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018540242
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/0168-0102(86)90056-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026141185
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1152/jn.1975.38.4.871 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082644917
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1163/156855389x00127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024865668
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1523/jneurosci.05-07-01688.1985 schema:sameAs https://app.dimensions.ai/details/publication/pub.1080085642
168 rdf:type schema:CreativeWork
169 https://doi.org/10.7210/jrsj.2.480 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037403481
170 rdf:type schema:CreativeWork
171 https://doi.org/10.9746/sicetr1965.19.421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023064797
172 rdf:type schema:CreativeWork
173 https://doi.org/10.9746/sicetr1965.20.453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033051418
174 rdf:type schema:CreativeWork
175 https://www.grid.ac/institutes/grid.136593.b schema:alternateName Osaka University
176 schema:name Department of Biophysical Engineering, Faculty of Engineering Science, Osaka University, 560, Toyonaka, Osaka, Japan
177 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...