Competition among the pioneers in a seasonal soft-bottom benthic succession: field experiments and analysis of the Gilpin-Ayala competition model View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1990-07

AUTHORS

Eugene D. Gallagher, G. B. Gardner, Peter A. Jumars

ABSTRACT

Controlled experiments, designed to assess the effects of pioneers on succession on an intertidal sandflat, provided evidence for interspecific competition between juvenile Hobsonia florida (Polychaeta, Ampharetidae) and oligochaetes. The field data were fitted to both the linear Volterra and non-linear Gilpin-Ayala competition equations. With its greater number of parameters, the Gilpin-Ayala model must provide a better fit to observed population abundances. The Gilpin-Ayala model is flawed as an explanation of the population trajectories of the H. florida and oligochaetes, because its non-linearity parameter affects only intraspecific competion. With either model our field data demonstrate a solution to Hutchinson's paradox. With competition coefficients near unity and similar carrying capacities, the predicted population trajectories are heavily dependent on initial conditions. The predicted times to competitive exclusion are long and can easily exceed the typical period of environmental constancy. Our study offers evidence for Neill's competitive bottleneck: competition acts primarily on the developmental stages of one of a pair of competing species. The permanent meiofauna may act as a competitive bottleneck for the population growth of benthic macrofauna. The mechanism of this competitive interaction probably involves exploitative interspecific competition for benthic diatoms. More... »

PAGES

427-442

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00317192

DOI

http://dx.doi.org/10.1007/bf00317192

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024538669

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28313175


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0602", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Ecology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Environmental Sciences Program, University of Massachusetts at Boston, 02125, Boston, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.266685.9", 
          "name": [
            "Environmental Sciences Program, University of Massachusetts at Boston, 02125, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gallagher", 
        "givenName": "Eugene D.", 
        "id": "sg:person.016530330145.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016530330145.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Environmental Sciences Program, University of Massachusetts at Boston, 02125, Boston, MA, USA", 
          "id": "http://www.grid.ac/institutes/grid.266685.9", 
          "name": [
            "Environmental Sciences Program, University of Massachusetts at Boston, 02125, Boston, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gardner", 
        "givenName": "G. B.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Oceanography, WB-10 University of Washington, 98195, Seattle, WA, USA", 
          "id": "http://www.grid.ac/institutes/grid.34477.33", 
          "name": [
            "School of Oceanography, WB-10 University of Washington, 98195, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jumars", 
        "givenName": "Peter A.", 
        "id": "sg:person.0106250122.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0106250122.20"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00790032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031614660", 
          "https://doi.org/10.1007/bf00790032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00398523", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021854936", 
          "https://doi.org/10.1007/bf00398523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00380002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040354162", 
          "https://doi.org/10.1007/bf00380002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00379308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014971536", 
          "https://doi.org/10.1007/bf00379308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02365101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047936205", 
          "https://doi.org/10.1007/bf02365101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-70495-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000671881", 
          "https://doi.org/10.1007/978-3-642-70495-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00345993", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009400469", 
          "https://doi.org/10.1007/bf00345993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00367957", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053185968", 
          "https://doi.org/10.1007/bf00367957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00508268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042202413", 
          "https://doi.org/10.1007/bf00508268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00364319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002362027", 
          "https://doi.org/10.1007/bf00364319"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1990-07", 
    "datePublishedReg": "1990-07-01", 
    "description": "Controlled experiments, designed to assess the effects of pioneers on succession on an intertidal sandflat, provided evidence for interspecific competition between juvenile Hobsonia florida (Polychaeta, Ampharetidae) and oligochaetes. The field data were fitted to both the linear Volterra and non-linear Gilpin-Ayala competition equations. With its greater number of parameters, the Gilpin-Ayala model must provide a better fit to observed population abundances. The Gilpin-Ayala model is flawed as an explanation of the population trajectories of the H. florida and oligochaetes, because its non-linearity parameter affects only intraspecific competion. With either model our field data demonstrate a solution to Hutchinson's paradox. With competition coefficients near unity and similar carrying capacities, the predicted population trajectories are heavily dependent on initial conditions. The predicted times to competitive exclusion are long and can easily exceed the typical period of environmental constancy. Our study offers evidence for Neill's competitive bottleneck: competition acts primarily on the developmental stages of one of a pair of competing species. The permanent meiofauna may act as a competitive bottleneck for the population growth of benthic macrofauna. The mechanism of this competitive interaction probably involves exploitative interspecific competition for benthic diatoms.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf00317192", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1009586", 
        "issn": [
          "0029-8549", 
          "1432-1939"
        ], 
        "name": "Oecologia", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "83"
      }
    ], 
    "keywords": [
      "interspecific competition", 
      "population trajectories", 
      "competitive bottleneck", 
      "similar carrying capacities", 
      "benthic succession", 
      "benthic diatoms", 
      "competitive exclusion", 
      "population abundance", 
      "environmental constancy", 
      "competitive interactions", 
      "developmental stages", 
      "intertidal sandflat", 
      "competition coefficients", 
      "permanent meiofauna", 
      "benthic macrofauna", 
      "competition equations", 
      "oligochaetes", 
      "field experiment", 
      "population growth", 
      "competition model", 
      "Hobsonia florida", 
      "diatoms", 
      "species", 
      "succession", 
      "competition", 
      "meiofauna", 
      "abundance", 
      "macrofauna", 
      "carrying capacity", 
      "sandflat", 
      "Florida", 
      "field data", 
      "bottleneck", 
      "greater number", 
      "growth", 
      "mechanism", 
      "evidence", 
      "interaction", 
      "competion", 
      "stage", 
      "pairs", 
      "pioneers", 
      "experiments", 
      "constancy", 
      "exclusion", 
      "data", 
      "analysis", 
      "paradox", 
      "number", 
      "capacity", 
      "conditions", 
      "study", 
      "explanation", 
      "effect", 
      "model", 
      "trajectories", 
      "period", 
      "time", 
      "Volterra", 
      "parameters", 
      "best fit", 
      "typical period", 
      "fit", 
      "solution", 
      "coefficient", 
      "unity", 
      "initial conditions", 
      "equations", 
      "linear Volterra", 
      "non-linearity parameter", 
      "effects of pioneers", 
      "juvenile Hobsonia florida", 
      "non-linear Gilpin-Ayala competition equations", 
      "Gilpin-Ayala competition equations", 
      "Gilpin-Ayala model", 
      "observed population abundances", 
      "intraspecific competion", 
      "Hutchinson's paradox", 
      "Neill's competitive bottleneck", 
      "exploitative interspecific competition", 
      "seasonal soft-bottom benthic succession", 
      "soft-bottom benthic succession", 
      "Gilpin-Ayala competition model"
    ], 
    "name": "Competition among the pioneers in a seasonal soft-bottom benthic succession: field experiments and analysis of the Gilpin-Ayala competition model", 
    "pagination": "427-442", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024538669"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00317192"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28313175"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00317192", 
      "https://app.dimensions.ai/details/publication/pub.1024538669"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_252.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf00317192"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00317192'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00317192'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00317192'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00317192'


 

This table displays all metadata directly associated to this object as RDF triples.

201 TRIPLES      22 PREDICATES      120 URIs      102 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00317192 schema:about anzsrc-for:06
2 anzsrc-for:0602
3 schema:author Ne95abc3bae81419bae6cfafe709b86a5
4 schema:citation sg:pub.10.1007/978-3-642-70495-6
5 sg:pub.10.1007/bf00345993
6 sg:pub.10.1007/bf00364319
7 sg:pub.10.1007/bf00367957
8 sg:pub.10.1007/bf00379308
9 sg:pub.10.1007/bf00380002
10 sg:pub.10.1007/bf00398523
11 sg:pub.10.1007/bf00508268
12 sg:pub.10.1007/bf00790032
13 sg:pub.10.1007/bf02365101
14 schema:datePublished 1990-07
15 schema:datePublishedReg 1990-07-01
16 schema:description Controlled experiments, designed to assess the effects of pioneers on succession on an intertidal sandflat, provided evidence for interspecific competition between juvenile Hobsonia florida (Polychaeta, Ampharetidae) and oligochaetes. The field data were fitted to both the linear Volterra and non-linear Gilpin-Ayala competition equations. With its greater number of parameters, the Gilpin-Ayala model must provide a better fit to observed population abundances. The Gilpin-Ayala model is flawed as an explanation of the population trajectories of the H. florida and oligochaetes, because its non-linearity parameter affects only intraspecific competion. With either model our field data demonstrate a solution to Hutchinson's paradox. With competition coefficients near unity and similar carrying capacities, the predicted population trajectories are heavily dependent on initial conditions. The predicted times to competitive exclusion are long and can easily exceed the typical period of environmental constancy. Our study offers evidence for Neill's competitive bottleneck: competition acts primarily on the developmental stages of one of a pair of competing species. The permanent meiofauna may act as a competitive bottleneck for the population growth of benthic macrofauna. The mechanism of this competitive interaction probably involves exploitative interspecific competition for benthic diatoms.
17 schema:genre article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N56ee5f1a1f474d94a2cf7940635d9b25
21 Na63c664cece44739a7e42209435dae95
22 sg:journal.1009586
23 schema:keywords Florida
24 Gilpin-Ayala competition equations
25 Gilpin-Ayala competition model
26 Gilpin-Ayala model
27 Hobsonia florida
28 Hutchinson's paradox
29 Neill's competitive bottleneck
30 Volterra
31 abundance
32 analysis
33 benthic diatoms
34 benthic macrofauna
35 benthic succession
36 best fit
37 bottleneck
38 capacity
39 carrying capacity
40 coefficient
41 competion
42 competition
43 competition coefficients
44 competition equations
45 competition model
46 competitive bottleneck
47 competitive exclusion
48 competitive interactions
49 conditions
50 constancy
51 data
52 developmental stages
53 diatoms
54 effect
55 effects of pioneers
56 environmental constancy
57 equations
58 evidence
59 exclusion
60 experiments
61 explanation
62 exploitative interspecific competition
63 field data
64 field experiment
65 fit
66 greater number
67 growth
68 initial conditions
69 interaction
70 interspecific competition
71 intertidal sandflat
72 intraspecific competion
73 juvenile Hobsonia florida
74 linear Volterra
75 macrofauna
76 mechanism
77 meiofauna
78 model
79 non-linear Gilpin-Ayala competition equations
80 non-linearity parameter
81 number
82 observed population abundances
83 oligochaetes
84 pairs
85 paradox
86 parameters
87 period
88 permanent meiofauna
89 pioneers
90 population abundance
91 population growth
92 population trajectories
93 sandflat
94 seasonal soft-bottom benthic succession
95 similar carrying capacities
96 soft-bottom benthic succession
97 solution
98 species
99 stage
100 study
101 succession
102 time
103 trajectories
104 typical period
105 unity
106 schema:name Competition among the pioneers in a seasonal soft-bottom benthic succession: field experiments and analysis of the Gilpin-Ayala competition model
107 schema:pagination 427-442
108 schema:productId N8e680c2e1d1e4c99a96b77c963f4a1b3
109 Ndcd964e0023b4eaea4f99f0ee2b83075
110 Nf2b74802212548b9bb5c32f8e8eb1e8d
111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024538669
112 https://doi.org/10.1007/bf00317192
113 schema:sdDatePublished 2021-12-01T19:08
114 schema:sdLicense https://scigraph.springernature.com/explorer/license/
115 schema:sdPublisher N6ab93d5ff8b047b2adb88adfd358e681
116 schema:url https://doi.org/10.1007/bf00317192
117 sgo:license sg:explorer/license/
118 sgo:sdDataset articles
119 rdf:type schema:ScholarlyArticle
120 N55008fe3b224413f81403ec6d2b028ab schema:affiliation grid-institutes:grid.266685.9
121 schema:familyName Gardner
122 schema:givenName G. B.
123 rdf:type schema:Person
124 N56ee5f1a1f474d94a2cf7940635d9b25 schema:volumeNumber 83
125 rdf:type schema:PublicationVolume
126 N6ab93d5ff8b047b2adb88adfd358e681 schema:name Springer Nature - SN SciGraph project
127 rdf:type schema:Organization
128 N86b2442c960d454bab6bcdafb18017cb rdf:first N55008fe3b224413f81403ec6d2b028ab
129 rdf:rest Nd55d14324cbe486b9ed35589f69bf356
130 N8e680c2e1d1e4c99a96b77c963f4a1b3 schema:name dimensions_id
131 schema:value pub.1024538669
132 rdf:type schema:PropertyValue
133 Na63c664cece44739a7e42209435dae95 schema:issueNumber 4
134 rdf:type schema:PublicationIssue
135 Nd55d14324cbe486b9ed35589f69bf356 rdf:first sg:person.0106250122.20
136 rdf:rest rdf:nil
137 Ndcd964e0023b4eaea4f99f0ee2b83075 schema:name pubmed_id
138 schema:value 28313175
139 rdf:type schema:PropertyValue
140 Ne95abc3bae81419bae6cfafe709b86a5 rdf:first sg:person.016530330145.74
141 rdf:rest N86b2442c960d454bab6bcdafb18017cb
142 Nf2b74802212548b9bb5c32f8e8eb1e8d schema:name doi
143 schema:value 10.1007/bf00317192
144 rdf:type schema:PropertyValue
145 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
146 schema:name Biological Sciences
147 rdf:type schema:DefinedTerm
148 anzsrc-for:0602 schema:inDefinedTermSet anzsrc-for:
149 schema:name Ecology
150 rdf:type schema:DefinedTerm
151 sg:journal.1009586 schema:issn 0029-8549
152 1432-1939
153 schema:name Oecologia
154 schema:publisher Springer Nature
155 rdf:type schema:Periodical
156 sg:person.0106250122.20 schema:affiliation grid-institutes:grid.34477.33
157 schema:familyName Jumars
158 schema:givenName Peter A.
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0106250122.20
160 rdf:type schema:Person
161 sg:person.016530330145.74 schema:affiliation grid-institutes:grid.266685.9
162 schema:familyName Gallagher
163 schema:givenName Eugene D.
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016530330145.74
165 rdf:type schema:Person
166 sg:pub.10.1007/978-3-642-70495-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000671881
167 https://doi.org/10.1007/978-3-642-70495-6
168 rdf:type schema:CreativeWork
169 sg:pub.10.1007/bf00345993 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009400469
170 https://doi.org/10.1007/bf00345993
171 rdf:type schema:CreativeWork
172 sg:pub.10.1007/bf00364319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002362027
173 https://doi.org/10.1007/bf00364319
174 rdf:type schema:CreativeWork
175 sg:pub.10.1007/bf00367957 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053185968
176 https://doi.org/10.1007/bf00367957
177 rdf:type schema:CreativeWork
178 sg:pub.10.1007/bf00379308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014971536
179 https://doi.org/10.1007/bf00379308
180 rdf:type schema:CreativeWork
181 sg:pub.10.1007/bf00380002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040354162
182 https://doi.org/10.1007/bf00380002
183 rdf:type schema:CreativeWork
184 sg:pub.10.1007/bf00398523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021854936
185 https://doi.org/10.1007/bf00398523
186 rdf:type schema:CreativeWork
187 sg:pub.10.1007/bf00508268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042202413
188 https://doi.org/10.1007/bf00508268
189 rdf:type schema:CreativeWork
190 sg:pub.10.1007/bf00790032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031614660
191 https://doi.org/10.1007/bf00790032
192 rdf:type schema:CreativeWork
193 sg:pub.10.1007/bf02365101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047936205
194 https://doi.org/10.1007/bf02365101
195 rdf:type schema:CreativeWork
196 grid-institutes:grid.266685.9 schema:alternateName Environmental Sciences Program, University of Massachusetts at Boston, 02125, Boston, MA, USA
197 schema:name Environmental Sciences Program, University of Massachusetts at Boston, 02125, Boston, MA, USA
198 rdf:type schema:Organization
199 grid-institutes:grid.34477.33 schema:alternateName School of Oceanography, WB-10 University of Washington, 98195, Seattle, WA, USA
200 schema:name School of Oceanography, WB-10 University of Washington, 98195, Seattle, WA, USA
201 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...