Kinetic Monte-Carlo simulation of network formation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1994-08

AUTHORS

Ján Šomvársky, Karel Dušek

ABSTRACT

the simulation described in Part I was applied to random step polyaddition of a trifunctional monomer and the results were compared with exact solution for an infinite system. The gel point conversions, the weight-average degree of polymerization before (Pw) and beyond (Pw,sol) the gel point, the sol fraction and the cycle rank were used for comparison. The best way for detection of the gel point conversion is the extrapolation of the gel fraction, wg, to wg=0. The largest fluctuations are exhibited by Pw and Pw,sol. To get results closer to the exact ones, one can repeat several experiments with smaller number of units or increase the number of units, the former way being somewhat more economical. Typical orders of magnitude used were 107 monomeric units. More... »

PAGES

377-384

References to SciGraph publications

  • 1986. Network formation in curing of epoxy resins in EPOXY RESINS AND COMPOSITES III
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf00314277

    DOI

    http://dx.doi.org/10.1007/bf00314277

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1031617741


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Chemistry (incl. Structural)", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute of Macromolecular Chemistry", 
              "id": "https://www.grid.ac/institutes/grid.424999.b", 
              "name": [
                "Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06, Prague 6, Czech Republic"
              ], 
              "type": "Organization"
            }, 
            "familyName": "\u0160omv\u00e1rsky", 
            "givenName": "J\u00e1n", 
            "id": "sg:person.011560071471.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011560071471.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Macromolecular Chemistry", 
              "id": "https://www.grid.ac/institutes/grid.424999.b", 
              "name": [
                "Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06, Prague 6, Czech Republic"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Du\u0161ek", 
            "givenName": "Karel", 
            "id": "sg:person.01151570140.64", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151570140.64"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bfb0035356", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034027589", 
              "https://doi.org/10.1007/bfb0035356"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.22.400", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060527953"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.22.400", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060527953"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1994-08", 
        "datePublishedReg": "1994-08-01", 
        "description": "the simulation described in Part I was applied to random step polyaddition of a trifunctional monomer and the results were compared with exact solution for an infinite system. The gel point conversions, the weight-average degree of polymerization before (Pw) and beyond (Pw,sol) the gel point, the sol fraction and the cycle rank were used for comparison. The best way for detection of the gel point conversion is the extrapolation of the gel fraction, wg, to wg=0. The largest fluctuations are exhibited by Pw and Pw,sol. To get results closer to the exact ones, one can repeat several experiments with smaller number of units or increase the number of units, the former way being somewhat more economical. Typical orders of magnitude used were 107 monomeric units.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf00314277", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1123778", 
            "issn": [
              "0170-0839", 
              "1436-2449"
            ], 
            "name": "Polymer Bulletin", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "33"
          }
        ], 
        "name": "Kinetic Monte-Carlo simulation of network formation", 
        "pagination": "377-384", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "969ebebd6500348daaa20aa764d0549e0dd794ff012c9f9f7b2e0d10e24bf446"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf00314277"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1031617741"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf00314277", 
          "https://app.dimensions.ai/details/publication/pub.1031617741"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T14:02", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130831_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF00314277"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00314277'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00314277'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00314277'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00314277'


     

    This table displays all metadata directly associated to this object as RDF triples.

    75 TRIPLES      21 PREDICATES      29 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf00314277 schema:about anzsrc-for:03
    2 anzsrc-for:0306
    3 schema:author N3b0b0ae007484111b6c154cc41a59910
    4 schema:citation sg:pub.10.1007/bfb0035356
    5 https://doi.org/10.1103/physrevb.22.400
    6 schema:datePublished 1994-08
    7 schema:datePublishedReg 1994-08-01
    8 schema:description the simulation described in Part I was applied to random step polyaddition of a trifunctional monomer and the results were compared with exact solution for an infinite system. The gel point conversions, the weight-average degree of polymerization before (Pw) and beyond (Pw,sol) the gel point, the sol fraction and the cycle rank were used for comparison. The best way for detection of the gel point conversion is the extrapolation of the gel fraction, wg, to wg=0. The largest fluctuations are exhibited by Pw and Pw,sol. To get results closer to the exact ones, one can repeat several experiments with smaller number of units or increase the number of units, the former way being somewhat more economical. Typical orders of magnitude used were 107 monomeric units.
    9 schema:genre research_article
    10 schema:inLanguage en
    11 schema:isAccessibleForFree false
    12 schema:isPartOf N66a9c7c7491c41368a1b0acbb7eeccbd
    13 Nf4e7b8e896fd45b7a1b4c491a2940820
    14 sg:journal.1123778
    15 schema:name Kinetic Monte-Carlo simulation of network formation
    16 schema:pagination 377-384
    17 schema:productId N3d35f282163046b8bc54467344abb9d3
    18 N9f162aced66f494e9070a6dcc70e528c
    19 Ne589835f5db444b489773fd9642075ef
    20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031617741
    21 https://doi.org/10.1007/bf00314277
    22 schema:sdDatePublished 2019-04-11T14:02
    23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    24 schema:sdPublisher Nf9804d8d443649238329ff18c99d8673
    25 schema:url http://link.springer.com/10.1007/BF00314277
    26 sgo:license sg:explorer/license/
    27 sgo:sdDataset articles
    28 rdf:type schema:ScholarlyArticle
    29 N2a94db50ea51454caae34c2e864a0a17 rdf:first sg:person.01151570140.64
    30 rdf:rest rdf:nil
    31 N3b0b0ae007484111b6c154cc41a59910 rdf:first sg:person.011560071471.34
    32 rdf:rest N2a94db50ea51454caae34c2e864a0a17
    33 N3d35f282163046b8bc54467344abb9d3 schema:name doi
    34 schema:value 10.1007/bf00314277
    35 rdf:type schema:PropertyValue
    36 N66a9c7c7491c41368a1b0acbb7eeccbd schema:volumeNumber 33
    37 rdf:type schema:PublicationVolume
    38 N9f162aced66f494e9070a6dcc70e528c schema:name dimensions_id
    39 schema:value pub.1031617741
    40 rdf:type schema:PropertyValue
    41 Ne589835f5db444b489773fd9642075ef schema:name readcube_id
    42 schema:value 969ebebd6500348daaa20aa764d0549e0dd794ff012c9f9f7b2e0d10e24bf446
    43 rdf:type schema:PropertyValue
    44 Nf4e7b8e896fd45b7a1b4c491a2940820 schema:issueNumber 3
    45 rdf:type schema:PublicationIssue
    46 Nf9804d8d443649238329ff18c99d8673 schema:name Springer Nature - SN SciGraph project
    47 rdf:type schema:Organization
    48 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    49 schema:name Chemical Sciences
    50 rdf:type schema:DefinedTerm
    51 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
    52 schema:name Physical Chemistry (incl. Structural)
    53 rdf:type schema:DefinedTerm
    54 sg:journal.1123778 schema:issn 0170-0839
    55 1436-2449
    56 schema:name Polymer Bulletin
    57 rdf:type schema:Periodical
    58 sg:person.01151570140.64 schema:affiliation https://www.grid.ac/institutes/grid.424999.b
    59 schema:familyName Dušek
    60 schema:givenName Karel
    61 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151570140.64
    62 rdf:type schema:Person
    63 sg:person.011560071471.34 schema:affiliation https://www.grid.ac/institutes/grid.424999.b
    64 schema:familyName Šomvársky
    65 schema:givenName Ján
    66 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011560071471.34
    67 rdf:type schema:Person
    68 sg:pub.10.1007/bfb0035356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034027589
    69 https://doi.org/10.1007/bfb0035356
    70 rdf:type schema:CreativeWork
    71 https://doi.org/10.1103/physrevb.22.400 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060527953
    72 rdf:type schema:CreativeWork
    73 https://www.grid.ac/institutes/grid.424999.b schema:alternateName Institute of Macromolecular Chemistry
    74 schema:name Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06, Prague 6, Czech Republic
    75 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...