An 57Fe Mössbauer effect study of poorly crystalline γ-FeOOH View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1986-01

AUTHORS

E. De Grave, R. M. Persoons, D. G. Chambaere, R. E. Vandenberghe, L. H. Bowen

ABSTRACT

Four synthetic lepidocrocite samples with a significant difference in crystallinity have been studied by the 57Fe Mössbauer effect technique at temperatures ranging between 12 K and 360 K. In the magnetically ordered region, the spectra display broad hyperfine field distributions, the profile of which could be derived numerically. In a broad transition region of approximately 20 K, an additional doublet must be included in the fitting model. From Mössbauer thermoscanning measurements at zero-velocity and with and without the application of an external magnetic field, it is found that the doublet is due to Fe3+ species in a paramagnetic state. Neither the hyperfine field nor the Néel temperature distributions are markedly affected by the crystallinity. In the pure paramagnetic state, the broadened doublets are best described by a distribution of quadrupole splittings in the range 0.3–1.9 mm/s. By numerical manipulations of the derived probability profiles it was possible to distinguish between the iron species in the outer surface layers of the γ-FeOOH particles and those in the innermost layers, the relative amount of each being correlated with the measured surface areas. The centre shift is quite uniform and its temperature dependence, determined in detail for one of the samples, is perfectly described by the Debije approximation for the second-order Doppler shift. From the obtained Debije temperature, a Mössbauer fraction f of 0.79 at room temperature was calculated, which is in good agreement with the results obtained for a reference lepidocrocite/hematite mixture. Finally, line shape simulations aimed to explain the external field spectrum at 180 K provided strong indications that both the sign and the asymmetry parameter of the electric field gradient are non-uniform as well. More... »

PAGES

61-67

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00307313

DOI

http://dx.doi.org/10.1007/bf00307313

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005813942


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Laboratory of Magnetism, Gent State University, Proeftuinstraat 86, 9000, Gent, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "De Grave", 
        "givenName": "E.", 
        "id": "sg:person.014440363007.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014440363007.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Laboratory of Magnetism, Gent State University, Proeftuinstraat 86, 9000, Gent, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Persoons", 
        "givenName": "R. M.", 
        "id": "sg:person.016226043011.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016226043011.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Laboratory of Magnetism, Gent State University, Proeftuinstraat 86, 9000, Gent, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chambaere", 
        "givenName": "D. G.", 
        "id": "sg:person.011220332021.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011220332021.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Laboratory of Magnetism, Gent State University, Proeftuinstraat 86, 9000, Gent, Belgium"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vandenberghe", 
        "givenName": "R. E.", 
        "id": "sg:person.07741276525.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07741276525.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "North Carolina State University", 
          "id": "https://www.grid.ac/institutes/grid.40803.3f", 
          "name": [
            "Department of Chemistry, North Carolina State University, P.O. Box 8204, 27695-8204, Raleigh, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bowen", 
        "givenName": "L. H.", 
        "id": "sg:person.010711361723.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010711361723.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/zaac.19733950104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002367473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-1547-7_7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017656270", 
          "https://doi.org/10.1007/978-1-4757-1547-7_7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00308010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027764410", 
          "https://doi.org/10.1007/bf00308010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00308010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027764410", 
          "https://doi.org/10.1007/bf00308010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02043468", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030132544", 
          "https://doi.org/10.1007/bf02043468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02043468", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030132544", 
          "https://doi.org/10.1007/bf02043468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-9002-6_15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032235653", 
          "https://doi.org/10.1007/978-1-4615-9002-6_15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-8853(84)90107-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035946975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-8853(84)90107-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035946975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02069375", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036416390", 
          "https://doi.org/10.1007/bf02069375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02069375", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036416390", 
          "https://doi.org/10.1007/bf02069375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-5087(82)90447-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049026107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-5087(82)90447-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049026107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(85)90837-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049189345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(85)90837-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049189345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/jphyscol:19766173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056996333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1749692", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057811687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3719/2/11/314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058963644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3735/14/5/018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058971656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0370-1328/92/3/326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059096302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.4.274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060782184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.4.274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060782184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1180/minmag.1984.048.349.04", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064118441"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1986-01", 
    "datePublishedReg": "1986-01-01", 
    "description": "Four synthetic lepidocrocite samples with a significant difference in crystallinity have been studied by the 57Fe M\u00f6ssbauer effect technique at temperatures ranging between 12 K and 360 K. In the magnetically ordered region, the spectra display broad hyperfine field distributions, the profile of which could be derived numerically. In a broad transition region of approximately 20 K, an additional doublet must be included in the fitting model. From M\u00f6ssbauer thermoscanning measurements at zero-velocity and with and without the application of an external magnetic field, it is found that the doublet is due to Fe3+ species in a paramagnetic state. Neither the hyperfine field nor the N\u00e9el temperature distributions are markedly affected by the crystallinity. In the pure paramagnetic state, the broadened doublets are best described by a distribution of quadrupole splittings in the range 0.3\u20131.9 mm/s. By numerical manipulations of the derived probability profiles it was possible to distinguish between the iron species in the outer surface layers of the \u03b3-FeOOH particles and those in the innermost layers, the relative amount of each being correlated with the measured surface areas. The centre shift is quite uniform and its temperature dependence, determined in detail for one of the samples, is perfectly described by the Debije approximation for the second-order Doppler shift. From the obtained Debije temperature, a M\u00f6ssbauer fraction f of 0.79 at room temperature was calculated, which is in good agreement with the results obtained for a reference lepidocrocite/hematite mixture. Finally, line shape simulations aimed to explain the external field spectrum at 180 K provided strong indications that both the sign and the asymmetry parameter of the electric field gradient are non-uniform as well.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf00307313", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052149", 
        "issn": [
          "0342-1791", 
          "1432-2021"
        ], 
        "name": "Physics and Chemistry of Minerals", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "name": "An 57Fe M\u00f6ssbauer effect study of poorly crystalline \u03b3-FeOOH", 
    "pagination": "61-67", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00307313"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1bb298099c4c5dce2a6eed63838089aa001f30bc1bb8d640c29f92bd070a6345"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005813942"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00307313", 
      "https://app.dimensions.ai/details/publication/pub.1005813942"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T08:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000374_0000000374/records_119724_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF00307313"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00307313'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00307313'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00307313'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00307313'


 

This table displays all metadata directly associated to this object as RDF triples.

150 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00307313 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author Nf781a690981e4cc4898c0c308acc3069
4 schema:citation sg:pub.10.1007/978-1-4615-9002-6_15
5 sg:pub.10.1007/978-1-4757-1547-7_7
6 sg:pub.10.1007/bf00308010
7 sg:pub.10.1007/bf02043468
8 sg:pub.10.1007/bf02069375
9 https://doi.org/10.1002/zaac.19733950104
10 https://doi.org/10.1016/0167-5087(82)90447-1
11 https://doi.org/10.1016/0304-8853(84)90107-0
12 https://doi.org/10.1016/0375-9601(85)90837-0
13 https://doi.org/10.1051/jphyscol:19766173
14 https://doi.org/10.1063/1.1749692
15 https://doi.org/10.1088/0022-3719/2/11/314
16 https://doi.org/10.1088/0022-3735/14/5/018
17 https://doi.org/10.1088/0370-1328/92/3/326
18 https://doi.org/10.1103/physrevlett.4.274
19 https://doi.org/10.1180/minmag.1984.048.349.04
20 schema:datePublished 1986-01
21 schema:datePublishedReg 1986-01-01
22 schema:description Four synthetic lepidocrocite samples with a significant difference in crystallinity have been studied by the 57Fe Mössbauer effect technique at temperatures ranging between 12 K and 360 K. In the magnetically ordered region, the spectra display broad hyperfine field distributions, the profile of which could be derived numerically. In a broad transition region of approximately 20 K, an additional doublet must be included in the fitting model. From Mössbauer thermoscanning measurements at zero-velocity and with and without the application of an external magnetic field, it is found that the doublet is due to Fe3+ species in a paramagnetic state. Neither the hyperfine field nor the Néel temperature distributions are markedly affected by the crystallinity. In the pure paramagnetic state, the broadened doublets are best described by a distribution of quadrupole splittings in the range 0.3–1.9 mm/s. By numerical manipulations of the derived probability profiles it was possible to distinguish between the iron species in the outer surface layers of the γ-FeOOH particles and those in the innermost layers, the relative amount of each being correlated with the measured surface areas. The centre shift is quite uniform and its temperature dependence, determined in detail for one of the samples, is perfectly described by the Debije approximation for the second-order Doppler shift. From the obtained Debije temperature, a Mössbauer fraction f of 0.79 at room temperature was calculated, which is in good agreement with the results obtained for a reference lepidocrocite/hematite mixture. Finally, line shape simulations aimed to explain the external field spectrum at 180 K provided strong indications that both the sign and the asymmetry parameter of the electric field gradient are non-uniform as well.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree false
26 schema:isPartOf N7802815341144f8bbfbd0548e34534c0
27 Na578f447e1c04ba0995814271d9f6e95
28 sg:journal.1052149
29 schema:name An 57Fe Mössbauer effect study of poorly crystalline γ-FeOOH
30 schema:pagination 61-67
31 schema:productId N13e8a19ad1114294944d61e914fe8921
32 N99bd4a3f4fb843f88797b10f60a151ed
33 Na119557cd29d475bb8f0579289fe0902
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005813942
35 https://doi.org/10.1007/bf00307313
36 schema:sdDatePublished 2019-04-15T08:49
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N4231132d09e143afb3c602133ac9b4f9
39 schema:url http://link.springer.com/10.1007/BF00307313
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N13e8a19ad1114294944d61e914fe8921 schema:name doi
44 schema:value 10.1007/bf00307313
45 rdf:type schema:PropertyValue
46 N1f557cc362b2461dbc79dc55528e8670 schema:name Laboratory of Magnetism, Gent State University, Proeftuinstraat 86, 9000, Gent, Belgium
47 rdf:type schema:Organization
48 N213543e2e8cd4e9a8adf3173b7a4a092 rdf:first sg:person.016226043011.09
49 rdf:rest N61956c0f2a964cd185aa2a69b432cd98
50 N4231132d09e143afb3c602133ac9b4f9 schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 N5c009ed902bf4ef89643609214d8073d schema:name Laboratory of Magnetism, Gent State University, Proeftuinstraat 86, 9000, Gent, Belgium
53 rdf:type schema:Organization
54 N61956c0f2a964cd185aa2a69b432cd98 rdf:first sg:person.011220332021.11
55 rdf:rest N92776c0d96c64274a8864ee122440424
56 N7802815341144f8bbfbd0548e34534c0 schema:volumeNumber 13
57 rdf:type schema:PublicationVolume
58 N92776c0d96c64274a8864ee122440424 rdf:first sg:person.07741276525.97
59 rdf:rest Nbafe7ef4e9ae4fc58c25808a8ede90c7
60 N99bd4a3f4fb843f88797b10f60a151ed schema:name dimensions_id
61 schema:value pub.1005813942
62 rdf:type schema:PropertyValue
63 Na119557cd29d475bb8f0579289fe0902 schema:name readcube_id
64 schema:value 1bb298099c4c5dce2a6eed63838089aa001f30bc1bb8d640c29f92bd070a6345
65 rdf:type schema:PropertyValue
66 Na578f447e1c04ba0995814271d9f6e95 schema:issueNumber 1
67 rdf:type schema:PublicationIssue
68 Nbafe7ef4e9ae4fc58c25808a8ede90c7 rdf:first sg:person.010711361723.30
69 rdf:rest rdf:nil
70 Ndf29ceb88b364ed290433924a2fc3b61 schema:name Laboratory of Magnetism, Gent State University, Proeftuinstraat 86, 9000, Gent, Belgium
71 rdf:type schema:Organization
72 Nf14221a51cd64bbbb2888df861863468 schema:name Laboratory of Magnetism, Gent State University, Proeftuinstraat 86, 9000, Gent, Belgium
73 rdf:type schema:Organization
74 Nf781a690981e4cc4898c0c308acc3069 rdf:first sg:person.014440363007.52
75 rdf:rest N213543e2e8cd4e9a8adf3173b7a4a092
76 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
77 schema:name Physical Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
80 schema:name Other Physical Sciences
81 rdf:type schema:DefinedTerm
82 sg:journal.1052149 schema:issn 0342-1791
83 1432-2021
84 schema:name Physics and Chemistry of Minerals
85 rdf:type schema:Periodical
86 sg:person.010711361723.30 schema:affiliation https://www.grid.ac/institutes/grid.40803.3f
87 schema:familyName Bowen
88 schema:givenName L. H.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010711361723.30
90 rdf:type schema:Person
91 sg:person.011220332021.11 schema:affiliation Nf14221a51cd64bbbb2888df861863468
92 schema:familyName Chambaere
93 schema:givenName D. G.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011220332021.11
95 rdf:type schema:Person
96 sg:person.014440363007.52 schema:affiliation Ndf29ceb88b364ed290433924a2fc3b61
97 schema:familyName De Grave
98 schema:givenName E.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014440363007.52
100 rdf:type schema:Person
101 sg:person.016226043011.09 schema:affiliation N1f557cc362b2461dbc79dc55528e8670
102 schema:familyName Persoons
103 schema:givenName R. M.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016226043011.09
105 rdf:type schema:Person
106 sg:person.07741276525.97 schema:affiliation N5c009ed902bf4ef89643609214d8073d
107 schema:familyName Vandenberghe
108 schema:givenName R. E.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07741276525.97
110 rdf:type schema:Person
111 sg:pub.10.1007/978-1-4615-9002-6_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032235653
112 https://doi.org/10.1007/978-1-4615-9002-6_15
113 rdf:type schema:CreativeWork
114 sg:pub.10.1007/978-1-4757-1547-7_7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017656270
115 https://doi.org/10.1007/978-1-4757-1547-7_7
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/bf00308010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027764410
118 https://doi.org/10.1007/bf00308010
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/bf02043468 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030132544
121 https://doi.org/10.1007/bf02043468
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/bf02069375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036416390
124 https://doi.org/10.1007/bf02069375
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1002/zaac.19733950104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002367473
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/0167-5087(82)90447-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049026107
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/0304-8853(84)90107-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035946975
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/0375-9601(85)90837-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049189345
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1051/jphyscol:19766173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056996333
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1063/1.1749692 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057811687
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1088/0022-3719/2/11/314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058963644
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1088/0022-3735/14/5/018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058971656
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1088/0370-1328/92/3/326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059096302
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1103/physrevlett.4.274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060782184
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1180/minmag.1984.048.349.04 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064118441
147 rdf:type schema:CreativeWork
148 https://www.grid.ac/institutes/grid.40803.3f schema:alternateName North Carolina State University
149 schema:name Department of Chemistry, North Carolina State University, P.O. Box 8204, 27695-8204, Raleigh, NC, USA
150 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...