Ontology type: schema:ScholarlyArticle
1994-05
AUTHORSG. R. Sauer, W. B. Zunic, J. R. Durig, R. E. Wuthier
ABSTRACTFourier-transform (FT) Raman spectroscopy was used to characterize the organic and mineral components of biological and synthetic calcium phosphate minerals. Raman spectroscopy provides information on biological minerals that is complimentary to more widely used infrared methodologies as some infrared-inactive vibrational modes are Raman-active. The application of FT-Raman technology has, for the first time, enabled the problems of high sample fluorescence and low signal-to-noise that are inherent in calcified tissues to be overcome. Raman spectra of calcium phosphates are dominated by a very strong band near 960 cm−1 that arises from the symmetric stretching mode \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\left( {{\mathbf{\rlap{--} v}}_{\text{1}} } \right)$$ \end{document}of the phosphate group. Other Raman-active phosphate vibrational bands are seen at approximately 1075 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\left( {{\mathbf{\rlap{--} v}}_{\text{3}} } \right)$$ \end{document}, 590 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\left( {{\mathbf{\rlap{--} v}}_{\text{4}} } \right)$$ \end{document}, and 435 cm−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\left( {{\mathbf{\rlap{--} v}}_{\text{2}} } \right)$$ \end{document}. Minerals containing acidic phosphate groups show additional vibrational modes. The different calcium phosphate mineral phases can be distinguished from one another by the relative positions and shapes of these bands in the Raman spectra. FT-Raman spectra of nascent, nonmineralized matrix vesicles (MV) show a distinct absence of the phosphate \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\mathbf{\rlap{--} v}}_{\text{1}}$$ \end{document}band even though these structures are rich in calcium and phosphate. Similar results were seen with milk casein and synthetic Ca-phosphatidyl-serine-PO4 complexes. Hence, the phosphate and/or acidic phosphate ions in these noncrystalline biological calcium phosphates is in a molecular environment that differs from that in synthetic amorphous calcium phosphate. In MV, the first distinct mineral phase to form contained acidic phosphate bands similar to those seen in octacalcium phosphate. The mineral phase present in fully mineralized MV was much more apatitic, resembling that found in bones and teeth. These findings are consistent with formation of an OCP-like precursor during MV mineral formation that subsequently hydrolyzes to form hydroxyapatite. More... »
PAGES414-420
http://scigraph.springernature.com/pub.10.1007/bf00305529
DOIhttp://dx.doi.org/10.1007/bf00305529
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1048939051
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/8062160
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biological Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Medical and Health Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biochemistry and Cell Biology",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0903",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biomedical Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Clinical Sciences",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Animals",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Bone Matrix",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Bone and Bones",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Calcium Phosphates",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Caseins",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Cattle",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Chickens",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Dental Enamel",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Durapatite",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Epiphyses",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Spectroscopy, Fourier Transform Infrared",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Spectrum Analysis, Raman",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Chemistry and Biochemistry, University of South Carolina, 29208, Columbia, South Carolina, USA",
"id": "http://www.grid.ac/institutes/grid.254567.7",
"name": [
"Department of Chemistry and Biochemistry, University of South Carolina, 29208, Columbia, South Carolina, USA"
],
"type": "Organization"
},
"familyName": "Sauer",
"givenName": "G. R.",
"id": "sg:person.0627221116.12",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627221116.12"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Chemistry and Biochemistry, University of South Carolina, 29208, Columbia, South Carolina, USA",
"id": "http://www.grid.ac/institutes/grid.254567.7",
"name": [
"Department of Chemistry and Biochemistry, University of South Carolina, 29208, Columbia, South Carolina, USA"
],
"type": "Organization"
},
"familyName": "Zunic",
"givenName": "W. B.",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Chemistry and Biochemistry, University of South Carolina, 29208, Columbia, South Carolina, USA",
"id": "http://www.grid.ac/institutes/grid.254567.7",
"name": [
"Department of Chemistry and Biochemistry, University of South Carolina, 29208, Columbia, South Carolina, USA"
],
"type": "Organization"
},
"familyName": "Durig",
"givenName": "J. R.",
"id": "sg:person.01324073763.91",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324073763.91"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Chemistry and Biochemistry, University of South Carolina, 29208, Columbia, South Carolina, USA",
"id": "http://www.grid.ac/institutes/grid.254567.7",
"name": [
"Department of Chemistry and Biochemistry, University of South Carolina, 29208, Columbia, South Carolina, USA"
],
"type": "Organization"
},
"familyName": "Wuthier",
"givenName": "R. E.",
"id": "sg:person.01340625634.06",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340625634.06"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/978-1-349-09868-2_8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049537618",
"https://doi.org/10.1007/978-1-349-09868-2_8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02553710",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035828644",
"https://doi.org/10.1007/bf02553710"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02554841",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008504962",
"https://doi.org/10.1007/bf02554841"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-61736-2_12",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014622953",
"https://doi.org/10.1007/978-3-642-61736-2_12"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02012794",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023725323",
"https://doi.org/10.1007/bf02012794"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02555847",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017527016",
"https://doi.org/10.1007/bf02555847"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02564004",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049888936",
"https://doi.org/10.1007/bf02564004"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02668129",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034130177",
"https://doi.org/10.1007/bf02668129"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-349-09868-2_5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027559032",
"https://doi.org/10.1007/978-1-349-09868-2_5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02196195",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034188185",
"https://doi.org/10.1007/bf02196195"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4613-2377-8_65",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004618712",
"https://doi.org/10.1007/978-1-4613-2377-8_65"
],
"type": "CreativeWork"
}
],
"datePublished": "1994-05",
"datePublishedReg": "1994-05-01",
"description": "Fourier-transform (FT) Raman spectroscopy was used to characterize the organic and mineral components of biological and synthetic calcium phosphate minerals. Raman spectroscopy provides information on biological minerals that is complimentary to more widely used infrared methodologies as some infrared-inactive vibrational modes are Raman-active. The application of FT-Raman technology has, for the first time, enabled the problems of high sample fluorescence and low signal-to-noise that are inherent in calcified tissues to be overcome. Raman spectra of calcium phosphates are dominated by a very strong band near 960 cm\u22121 that arises from the symmetric stretching mode \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$\\left( {{\\mathbf{\\rlap{--} v}}_{\\text{1}} } \\right)$$\n\\end{document}of the phosphate group. Other Raman-active phosphate vibrational bands are seen at approximately 1075 \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$\\left( {{\\mathbf{\\rlap{--} v}}_{\\text{3}} } \\right)$$\n\\end{document}, 590 \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$\\left( {{\\mathbf{\\rlap{--} v}}_{\\text{4}} } \\right)$$\n\\end{document}, and 435 cm\u22121\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$\\left( {{\\mathbf{\\rlap{--} v}}_{\\text{2}} } \\right)$$\n\\end{document}. Minerals containing acidic phosphate groups show additional vibrational modes. The different calcium phosphate mineral phases can be distinguished from one another by the relative positions and shapes of these bands in the Raman spectra. FT-Raman spectra of nascent, nonmineralized matrix vesicles (MV) show a distinct absence of the phosphate \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$${\\mathbf{\\rlap{--} v}}_{\\text{1}}$$\n\\end{document}band even though these structures are rich in calcium and phosphate. Similar results were seen with milk casein and synthetic Ca-phosphatidyl-serine-PO4 complexes. Hence, the phosphate and/or acidic phosphate ions in these noncrystalline biological calcium phosphates is in a molecular environment that differs from that in synthetic amorphous calcium phosphate. In MV, the first distinct mineral phase to form contained acidic phosphate bands similar to those seen in octacalcium phosphate. The mineral phase present in fully mineralized MV was much more apatitic, resembling that found in bones and teeth. These findings are consistent with formation of an OCP-like precursor during MV mineral formation that subsequently hydrolyzes to form hydroxyapatite.",
"genre": "article",
"id": "sg:pub.10.1007/bf00305529",
"isAccessibleForFree": false,
"isFundedItemOf": [
{
"id": "sg:grant.2627282",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.2462373",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1089641",
"issn": [
"0171-967X",
"1432-0827"
],
"name": "Calcified Tissue International",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "5",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "54"
}
],
"keywords": [
"Fourier transform Raman spectroscopy",
"biological calcium phosphates",
"Raman spectroscopy",
"Raman spectra",
"phosphate groups",
"FT-Raman spectra",
"vibrational modes",
"transform Raman spectroscopy",
"mineral phases",
"acidic phosphate groups",
"synthetic amorphous calcium phosphate",
"additional vibrational modes",
"biological minerals",
"calcium phosphate",
"PO4 complexes",
"molecular environment",
"vibrational bands",
"calcium phosphate minerals",
"phosphate ions",
"spectroscopy",
"phosphate bands",
"distinct mineral phases",
"sample fluorescence",
"synthetic Ca",
"strong band",
"phosphate minerals",
"mineral formation",
"octacalcium phosphate",
"amorphous calcium phosphate",
"mineral components",
"spectra",
"phosphate",
"milk casein",
"minerals",
"ions",
"Raman",
"first time",
"formation",
"band",
"complexes",
"phase",
"precursors",
"fluorescence",
"different calcium",
"hydroxyapatite",
"structure",
"Ca",
"mode",
"casein",
"applications",
"distinct absence",
"calcified tissues",
"group",
"relative position",
"vesicles",
"shape",
"calcium",
"nascent",
"components",
"environment",
"position",
"methodology",
"absence",
"similar results",
"time",
"technology",
"one",
"results",
"signals",
"low signal",
"matrix vesicles",
"information",
"noise",
"tissue",
"problem",
"findings",
"bone",
"teeth"
],
"name": "Fourier transform raman spectroscopy of synthetic and biological calcium phosphates",
"pagination": "414-420",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1048939051"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/bf00305529"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"8062160"
]
}
],
"sameAs": [
"https://doi.org/10.1007/bf00305529",
"https://app.dimensions.ai/details/publication/pub.1048939051"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T16:52",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_245.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/bf00305529"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00305529'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00305529'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00305529'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00305529'
This table displays all metadata directly associated to this object as RDF triples.
271 TRIPLES
21 PREDICATES
131 URIs
108 LITERALS
19 BLANK NODES