Fourier transform raman spectroscopy of synthetic and biological calcium phosphates View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1994-05

AUTHORS

G. R. Sauer, W. B. Zunic, J. R. Durig, R. E. Wuthier

ABSTRACT

Fourier-transform (FT) Raman spectroscopy was used to characterize the organic and mineral components of biological and synthetic calcium phosphate minerals. Raman spectroscopy provides information on biological minerals that is complimentary to more widely used infrared methodologies as some infrared-inactive vibrational modes are Raman-active. The application of FT-Raman technology has, for the first time, enabled the problems of high sample fluorescence and low signal-to-noise that are inherent in calcified tissues to be overcome. Raman spectra of calcium phosphates are dominated by a very strong band near 960 cm−1 that arises from the symmetric stretching mode \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\left( {{\mathbf{\rlap{--} v}}_{\text{1}} } \right)$$ \end{document}of the phosphate group. Other Raman-active phosphate vibrational bands are seen at approximately 1075 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\left( {{\mathbf{\rlap{--} v}}_{\text{3}} } \right)$$ \end{document}, 590 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\left( {{\mathbf{\rlap{--} v}}_{\text{4}} } \right)$$ \end{document}, and 435 cm−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\left( {{\mathbf{\rlap{--} v}}_{\text{2}} } \right)$$ \end{document}. Minerals containing acidic phosphate groups show additional vibrational modes. The different calcium phosphate mineral phases can be distinguished from one another by the relative positions and shapes of these bands in the Raman spectra. FT-Raman spectra of nascent, nonmineralized matrix vesicles (MV) show a distinct absence of the phosphate \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\mathbf{\rlap{--} v}}_{\text{1}}$$ \end{document}band even though these structures are rich in calcium and phosphate. Similar results were seen with milk casein and synthetic Ca-phosphatidyl-serine-PO4 complexes. Hence, the phosphate and/or acidic phosphate ions in these noncrystalline biological calcium phosphates is in a molecular environment that differs from that in synthetic amorphous calcium phosphate. In MV, the first distinct mineral phase to form contained acidic phosphate bands similar to those seen in octacalcium phosphate. The mineral phase present in fully mineralized MV was much more apatitic, resembling that found in bones and teeth. These findings are consistent with formation of an OCP-like precursor during MV mineral formation that subsequently hydrolyzes to form hydroxyapatite. More... »

PAGES

414-420

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00305529

DOI

http://dx.doi.org/10.1007/bf00305529

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048939051

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/8062160


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0903", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biomedical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bone Matrix", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bone and Bones", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Calcium Phosphates", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Caseins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cattle", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chickens", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dental Enamel", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Durapatite", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Epiphyses", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Spectroscopy, Fourier Transform Infrared", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Spectrum Analysis, Raman", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Chemistry and Biochemistry, University of South Carolina, 29208, Columbia, South Carolina, USA", 
          "id": "http://www.grid.ac/institutes/grid.254567.7", 
          "name": [
            "Department of Chemistry and Biochemistry, University of South Carolina, 29208, Columbia, South Carolina, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sauer", 
        "givenName": "G. R.", 
        "id": "sg:person.0627221116.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627221116.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemistry and Biochemistry, University of South Carolina, 29208, Columbia, South Carolina, USA", 
          "id": "http://www.grid.ac/institutes/grid.254567.7", 
          "name": [
            "Department of Chemistry and Biochemistry, University of South Carolina, 29208, Columbia, South Carolina, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zunic", 
        "givenName": "W. B.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemistry and Biochemistry, University of South Carolina, 29208, Columbia, South Carolina, USA", 
          "id": "http://www.grid.ac/institutes/grid.254567.7", 
          "name": [
            "Department of Chemistry and Biochemistry, University of South Carolina, 29208, Columbia, South Carolina, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Durig", 
        "givenName": "J. R.", 
        "id": "sg:person.01324073763.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324073763.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemistry and Biochemistry, University of South Carolina, 29208, Columbia, South Carolina, USA", 
          "id": "http://www.grid.ac/institutes/grid.254567.7", 
          "name": [
            "Department of Chemistry and Biochemistry, University of South Carolina, 29208, Columbia, South Carolina, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wuthier", 
        "givenName": "R. E.", 
        "id": "sg:person.01340625634.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340625634.06"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-349-09868-2_8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049537618", 
          "https://doi.org/10.1007/978-1-349-09868-2_8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02553710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035828644", 
          "https://doi.org/10.1007/bf02553710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02554841", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008504962", 
          "https://doi.org/10.1007/bf02554841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-61736-2_12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014622953", 
          "https://doi.org/10.1007/978-3-642-61736-2_12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02012794", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023725323", 
          "https://doi.org/10.1007/bf02012794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02555847", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017527016", 
          "https://doi.org/10.1007/bf02555847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02564004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049888936", 
          "https://doi.org/10.1007/bf02564004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02668129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034130177", 
          "https://doi.org/10.1007/bf02668129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-349-09868-2_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027559032", 
          "https://doi.org/10.1007/978-1-349-09868-2_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02196195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034188185", 
          "https://doi.org/10.1007/bf02196195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4613-2377-8_65", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004618712", 
          "https://doi.org/10.1007/978-1-4613-2377-8_65"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1994-05", 
    "datePublishedReg": "1994-05-01", 
    "description": "Fourier-transform (FT) Raman spectroscopy was used to characterize the organic and mineral components of biological and synthetic calcium phosphate minerals. Raman spectroscopy provides information on biological minerals that is complimentary to more widely used infrared methodologies as some infrared-inactive vibrational modes are Raman-active. The application of FT-Raman technology has, for the first time, enabled the problems of high sample fluorescence and low signal-to-noise that are inherent in calcified tissues to be overcome. Raman spectra of calcium phosphates are dominated by a very strong band near 960 cm\u22121 that arises from the symmetric stretching mode \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$\\left( {{\\mathbf{\\rlap{--} v}}_{\\text{1}} } \\right)$$\n\\end{document}of the phosphate group. Other Raman-active phosphate vibrational bands are seen at approximately 1075 \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$\\left( {{\\mathbf{\\rlap{--} v}}_{\\text{3}} } \\right)$$\n\\end{document}, 590 \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$\\left( {{\\mathbf{\\rlap{--} v}}_{\\text{4}} } \\right)$$\n\\end{document}, and 435 cm\u22121\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$$\\left( {{\\mathbf{\\rlap{--} v}}_{\\text{2}} } \\right)$$\n\\end{document}. Minerals containing acidic phosphate groups show additional vibrational modes. The different calcium phosphate mineral phases can be distinguished from one another by the relative positions and shapes of these bands in the Raman spectra. FT-Raman spectra of nascent, nonmineralized matrix vesicles (MV) show a distinct absence of the phosphate \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}\n$${\\mathbf{\\rlap{--} v}}_{\\text{1}}$$\n\\end{document}band even though these structures are rich in calcium and phosphate. Similar results were seen with milk casein and synthetic Ca-phosphatidyl-serine-PO4 complexes. Hence, the phosphate and/or acidic phosphate ions in these noncrystalline biological calcium phosphates is in a molecular environment that differs from that in synthetic amorphous calcium phosphate. In MV, the first distinct mineral phase to form contained acidic phosphate bands similar to those seen in octacalcium phosphate. The mineral phase present in fully mineralized MV was much more apatitic, resembling that found in bones and teeth. These findings are consistent with formation of an OCP-like precursor during MV mineral formation that subsequently hydrolyzes to form hydroxyapatite.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf00305529", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2627282", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2462373", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1089641", 
        "issn": [
          "0171-967X", 
          "1432-0827"
        ], 
        "name": "Calcified Tissue International", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "54"
      }
    ], 
    "keywords": [
      "Fourier transform Raman spectroscopy", 
      "biological calcium phosphates", 
      "Raman spectroscopy", 
      "Raman spectra", 
      "phosphate groups", 
      "FT-Raman spectra", 
      "vibrational modes", 
      "transform Raman spectroscopy", 
      "mineral phases", 
      "acidic phosphate groups", 
      "synthetic amorphous calcium phosphate", 
      "additional vibrational modes", 
      "biological minerals", 
      "calcium phosphate", 
      "PO4 complexes", 
      "molecular environment", 
      "vibrational bands", 
      "calcium phosphate minerals", 
      "phosphate ions", 
      "spectroscopy", 
      "phosphate bands", 
      "distinct mineral phases", 
      "sample fluorescence", 
      "synthetic Ca", 
      "strong band", 
      "phosphate minerals", 
      "mineral formation", 
      "octacalcium phosphate", 
      "amorphous calcium phosphate", 
      "mineral components", 
      "spectra", 
      "phosphate", 
      "milk casein", 
      "minerals", 
      "ions", 
      "Raman", 
      "first time", 
      "formation", 
      "band", 
      "complexes", 
      "phase", 
      "precursors", 
      "fluorescence", 
      "different calcium", 
      "hydroxyapatite", 
      "structure", 
      "Ca", 
      "mode", 
      "casein", 
      "applications", 
      "distinct absence", 
      "calcified tissues", 
      "group", 
      "relative position", 
      "vesicles", 
      "shape", 
      "calcium", 
      "nascent", 
      "components", 
      "environment", 
      "position", 
      "methodology", 
      "absence", 
      "similar results", 
      "time", 
      "technology", 
      "one", 
      "results", 
      "signals", 
      "low signal", 
      "matrix vesicles", 
      "information", 
      "noise", 
      "tissue", 
      "problem", 
      "findings", 
      "bone", 
      "teeth"
    ], 
    "name": "Fourier transform raman spectroscopy of synthetic and biological calcium phosphates", 
    "pagination": "414-420", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048939051"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00305529"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "8062160"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00305529", 
      "https://app.dimensions.ai/details/publication/pub.1048939051"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T16:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_245.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf00305529"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00305529'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00305529'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00305529'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00305529'


 

This table displays all metadata directly associated to this object as RDF triples.

271 TRIPLES      21 PREDICATES      131 URIs      108 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00305529 schema:about N0a8088e3308d42acba7d140b6e9e3f7f
2 N380a626377054992846b2f83d7fb3ef2
3 N405e19fb3fe64034aa018765207df690
4 N54c887beffb54408ab38901d6aacf5e2
5 N578a5fa6a7144156b29872f71615859c
6 N674286b3446a4fdd96e3719430bc14c8
7 N775eb434b2454476980285a5f425e64a
8 N926797a2d2284ffd91a7c06a2ea7b928
9 N9ee7f1f8f43449ea821d19ed28714a39
10 Na5096e24ee0d4abbb3fd2b14b8e43fb1
11 Nc06531ca73844ec890db58d466a73539
12 Ne7466a1368e54792a16a565d5d758dbb
13 anzsrc-for:06
14 anzsrc-for:0601
15 anzsrc-for:09
16 anzsrc-for:0903
17 anzsrc-for:11
18 anzsrc-for:1103
19 schema:author Nfa52cfc38b9548d7af049ef3430619ec
20 schema:citation sg:pub.10.1007/978-1-349-09868-2_5
21 sg:pub.10.1007/978-1-349-09868-2_8
22 sg:pub.10.1007/978-1-4613-2377-8_65
23 sg:pub.10.1007/978-3-642-61736-2_12
24 sg:pub.10.1007/bf02012794
25 sg:pub.10.1007/bf02196195
26 sg:pub.10.1007/bf02553710
27 sg:pub.10.1007/bf02554841
28 sg:pub.10.1007/bf02555847
29 sg:pub.10.1007/bf02564004
30 sg:pub.10.1007/bf02668129
31 schema:datePublished 1994-05
32 schema:datePublishedReg 1994-05-01
33 schema:description Fourier-transform (FT) Raman spectroscopy was used to characterize the organic and mineral components of biological and synthetic calcium phosphate minerals. Raman spectroscopy provides information on biological minerals that is complimentary to more widely used infrared methodologies as some infrared-inactive vibrational modes are Raman-active. The application of FT-Raman technology has, for the first time, enabled the problems of high sample fluorescence and low signal-to-noise that are inherent in calcified tissues to be overcome. Raman spectra of calcium phosphates are dominated by a very strong band near 960 cm−1 that arises from the symmetric stretching mode \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\left( {{\mathbf{\rlap{--} v}}_{\text{1}} } \right)$$ \end{document}of the phosphate group. Other Raman-active phosphate vibrational bands are seen at approximately 1075 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\left( {{\mathbf{\rlap{--} v}}_{\text{3}} } \right)$$ \end{document}, 590 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\left( {{\mathbf{\rlap{--} v}}_{\text{4}} } \right)$$ \end{document}, and 435 cm−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\left( {{\mathbf{\rlap{--} v}}_{\text{2}} } \right)$$ \end{document}. Minerals containing acidic phosphate groups show additional vibrational modes. The different calcium phosphate mineral phases can be distinguished from one another by the relative positions and shapes of these bands in the Raman spectra. FT-Raman spectra of nascent, nonmineralized matrix vesicles (MV) show a distinct absence of the phosphate \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\mathbf{\rlap{--} v}}_{\text{1}}$$ \end{document}band even though these structures are rich in calcium and phosphate. Similar results were seen with milk casein and synthetic Ca-phosphatidyl-serine-PO4 complexes. Hence, the phosphate and/or acidic phosphate ions in these noncrystalline biological calcium phosphates is in a molecular environment that differs from that in synthetic amorphous calcium phosphate. In MV, the first distinct mineral phase to form contained acidic phosphate bands similar to those seen in octacalcium phosphate. The mineral phase present in fully mineralized MV was much more apatitic, resembling that found in bones and teeth. These findings are consistent with formation of an OCP-like precursor during MV mineral formation that subsequently hydrolyzes to form hydroxyapatite.
34 schema:genre article
35 schema:isAccessibleForFree false
36 schema:isPartOf Nd8fadd1361a24a81a60a49383285e983
37 Ndf6054caeb1d4864b3fe66964cec95d8
38 sg:journal.1089641
39 schema:keywords Ca
40 FT-Raman spectra
41 Fourier transform Raman spectroscopy
42 PO4 complexes
43 Raman
44 Raman spectra
45 Raman spectroscopy
46 absence
47 acidic phosphate groups
48 additional vibrational modes
49 amorphous calcium phosphate
50 applications
51 band
52 biological calcium phosphates
53 biological minerals
54 bone
55 calcified tissues
56 calcium
57 calcium phosphate
58 calcium phosphate minerals
59 casein
60 complexes
61 components
62 different calcium
63 distinct absence
64 distinct mineral phases
65 environment
66 findings
67 first time
68 fluorescence
69 formation
70 group
71 hydroxyapatite
72 information
73 ions
74 low signal
75 matrix vesicles
76 methodology
77 milk casein
78 mineral components
79 mineral formation
80 mineral phases
81 minerals
82 mode
83 molecular environment
84 nascent
85 noise
86 octacalcium phosphate
87 one
88 phase
89 phosphate
90 phosphate bands
91 phosphate groups
92 phosphate ions
93 phosphate minerals
94 position
95 precursors
96 problem
97 relative position
98 results
99 sample fluorescence
100 shape
101 signals
102 similar results
103 spectra
104 spectroscopy
105 strong band
106 structure
107 synthetic Ca
108 synthetic amorphous calcium phosphate
109 technology
110 teeth
111 time
112 tissue
113 transform Raman spectroscopy
114 vesicles
115 vibrational bands
116 vibrational modes
117 schema:name Fourier transform raman spectroscopy of synthetic and biological calcium phosphates
118 schema:pagination 414-420
119 schema:productId N9b95c5d35a924c7691b379a001625597
120 Nccbaba89d47646d6bd550b59b8d853da
121 Nf9ff9278c3d54decbc640334c3d73ad9
122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048939051
123 https://doi.org/10.1007/bf00305529
124 schema:sdDatePublished 2022-08-04T16:52
125 schema:sdLicense https://scigraph.springernature.com/explorer/license/
126 schema:sdPublisher N9578f17eaf574582bdc01c7b07a2dbf1
127 schema:url https://doi.org/10.1007/bf00305529
128 sgo:license sg:explorer/license/
129 sgo:sdDataset articles
130 rdf:type schema:ScholarlyArticle
131 N0a8088e3308d42acba7d140b6e9e3f7f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Spectroscopy, Fourier Transform Infrared
133 rdf:type schema:DefinedTerm
134 N1c114d29045742f4a900f5a4ef111fc2 rdf:first sg:person.01324073763.91
135 rdf:rest Nb15c4770f7694cad9e1137a814b988e4
136 N380a626377054992846b2f83d7fb3ef2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Spectrum Analysis, Raman
138 rdf:type schema:DefinedTerm
139 N405e19fb3fe64034aa018765207df690 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Caseins
141 rdf:type schema:DefinedTerm
142 N54c887beffb54408ab38901d6aacf5e2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Bone and Bones
144 rdf:type schema:DefinedTerm
145 N578a5fa6a7144156b29872f71615859c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Dental Enamel
147 rdf:type schema:DefinedTerm
148 N674286b3446a4fdd96e3719430bc14c8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Epiphyses
150 rdf:type schema:DefinedTerm
151 N775eb434b2454476980285a5f425e64a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Animals
153 rdf:type schema:DefinedTerm
154 N926797a2d2284ffd91a7c06a2ea7b928 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Bone Matrix
156 rdf:type schema:DefinedTerm
157 N92c9c4fe3899484fbee7163b4c4c80f5 rdf:first Na96123d0567e45f49136359a0fb7dec0
158 rdf:rest N1c114d29045742f4a900f5a4ef111fc2
159 N9578f17eaf574582bdc01c7b07a2dbf1 schema:name Springer Nature - SN SciGraph project
160 rdf:type schema:Organization
161 N9b95c5d35a924c7691b379a001625597 schema:name pubmed_id
162 schema:value 8062160
163 rdf:type schema:PropertyValue
164 N9ee7f1f8f43449ea821d19ed28714a39 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Chickens
166 rdf:type schema:DefinedTerm
167 Na5096e24ee0d4abbb3fd2b14b8e43fb1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Calcium Phosphates
169 rdf:type schema:DefinedTerm
170 Na96123d0567e45f49136359a0fb7dec0 schema:affiliation grid-institutes:grid.254567.7
171 schema:familyName Zunic
172 schema:givenName W. B.
173 rdf:type schema:Person
174 Nb15c4770f7694cad9e1137a814b988e4 rdf:first sg:person.01340625634.06
175 rdf:rest rdf:nil
176 Nc06531ca73844ec890db58d466a73539 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name Cattle
178 rdf:type schema:DefinedTerm
179 Nccbaba89d47646d6bd550b59b8d853da schema:name dimensions_id
180 schema:value pub.1048939051
181 rdf:type schema:PropertyValue
182 Nd8fadd1361a24a81a60a49383285e983 schema:volumeNumber 54
183 rdf:type schema:PublicationVolume
184 Ndf6054caeb1d4864b3fe66964cec95d8 schema:issueNumber 5
185 rdf:type schema:PublicationIssue
186 Ne7466a1368e54792a16a565d5d758dbb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Durapatite
188 rdf:type schema:DefinedTerm
189 Nf9ff9278c3d54decbc640334c3d73ad9 schema:name doi
190 schema:value 10.1007/bf00305529
191 rdf:type schema:PropertyValue
192 Nfa52cfc38b9548d7af049ef3430619ec rdf:first sg:person.0627221116.12
193 rdf:rest N92c9c4fe3899484fbee7163b4c4c80f5
194 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
195 schema:name Biological Sciences
196 rdf:type schema:DefinedTerm
197 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
198 schema:name Biochemistry and Cell Biology
199 rdf:type schema:DefinedTerm
200 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
201 schema:name Engineering
202 rdf:type schema:DefinedTerm
203 anzsrc-for:0903 schema:inDefinedTermSet anzsrc-for:
204 schema:name Biomedical Engineering
205 rdf:type schema:DefinedTerm
206 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
207 schema:name Medical and Health Sciences
208 rdf:type schema:DefinedTerm
209 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
210 schema:name Clinical Sciences
211 rdf:type schema:DefinedTerm
212 sg:grant.2462373 http://pending.schema.org/fundedItem sg:pub.10.1007/bf00305529
213 rdf:type schema:MonetaryGrant
214 sg:grant.2627282 http://pending.schema.org/fundedItem sg:pub.10.1007/bf00305529
215 rdf:type schema:MonetaryGrant
216 sg:journal.1089641 schema:issn 0171-967X
217 1432-0827
218 schema:name Calcified Tissue International
219 schema:publisher Springer Nature
220 rdf:type schema:Periodical
221 sg:person.01324073763.91 schema:affiliation grid-institutes:grid.254567.7
222 schema:familyName Durig
223 schema:givenName J. R.
224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324073763.91
225 rdf:type schema:Person
226 sg:person.01340625634.06 schema:affiliation grid-institutes:grid.254567.7
227 schema:familyName Wuthier
228 schema:givenName R. E.
229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340625634.06
230 rdf:type schema:Person
231 sg:person.0627221116.12 schema:affiliation grid-institutes:grid.254567.7
232 schema:familyName Sauer
233 schema:givenName G. R.
234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627221116.12
235 rdf:type schema:Person
236 sg:pub.10.1007/978-1-349-09868-2_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027559032
237 https://doi.org/10.1007/978-1-349-09868-2_5
238 rdf:type schema:CreativeWork
239 sg:pub.10.1007/978-1-349-09868-2_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049537618
240 https://doi.org/10.1007/978-1-349-09868-2_8
241 rdf:type schema:CreativeWork
242 sg:pub.10.1007/978-1-4613-2377-8_65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004618712
243 https://doi.org/10.1007/978-1-4613-2377-8_65
244 rdf:type schema:CreativeWork
245 sg:pub.10.1007/978-3-642-61736-2_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014622953
246 https://doi.org/10.1007/978-3-642-61736-2_12
247 rdf:type schema:CreativeWork
248 sg:pub.10.1007/bf02012794 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023725323
249 https://doi.org/10.1007/bf02012794
250 rdf:type schema:CreativeWork
251 sg:pub.10.1007/bf02196195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034188185
252 https://doi.org/10.1007/bf02196195
253 rdf:type schema:CreativeWork
254 sg:pub.10.1007/bf02553710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035828644
255 https://doi.org/10.1007/bf02553710
256 rdf:type schema:CreativeWork
257 sg:pub.10.1007/bf02554841 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008504962
258 https://doi.org/10.1007/bf02554841
259 rdf:type schema:CreativeWork
260 sg:pub.10.1007/bf02555847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017527016
261 https://doi.org/10.1007/bf02555847
262 rdf:type schema:CreativeWork
263 sg:pub.10.1007/bf02564004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049888936
264 https://doi.org/10.1007/bf02564004
265 rdf:type schema:CreativeWork
266 sg:pub.10.1007/bf02668129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034130177
267 https://doi.org/10.1007/bf02668129
268 rdf:type schema:CreativeWork
269 grid-institutes:grid.254567.7 schema:alternateName Department of Chemistry and Biochemistry, University of South Carolina, 29208, Columbia, South Carolina, USA
270 schema:name Department of Chemistry and Biochemistry, University of South Carolina, 29208, Columbia, South Carolina, USA
271 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...