Small-signal analysis of a visual reflex in the locust View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1966-05

AUTHORS

John Thorson

ABSTRACT

Small-signal frequency-response measurements of a locust visual reflex in the range 0.0014 cps to 6 cps suggest description via special departures from ordinary linear-system characterization, at both low and high frequencies.At low frequency the response is similar to that of an adapting system having the formal characteristics of fractional-order differentiation. Adjustment of test-pattern luminance from 0.00025 to 1 lambert increases the order of this differentiation by about 0.37. Comparison of intensity-dependent properties of the reflex with related electrophysiological studies of photoreception implies that the frequency dependence of the optomotor response is dominated by receptor dynamics.At high frequency, phase lag is less than that required by minimum-phase linear description of the gain curves. In order to avoid the question of “predictive tracking” by the locust, a time-and frequency-dependent gain modulation is suggested to account for the less-than-minimum phase property, and shown to be qualitatively compatible with transients in gain at the start of sinusoidal pattern motion.The motion-perception model of Hassenstein and Reichardt, shown previously to predict the gross gain and phase relations of the small-signal locust response, is apparently an inappropriate description of these data since the decisive gain and phase measurements are more plausibly accounted for by intensity-dependent adaptation than by the properties of the model underlying the original prediction. An abstraction of the fundamental properties of their multiplicative interaction of ommatidia, however, can assist electrophysiological search for neural correlates of motion perception; it is shown that, under certain conditions, interaction of receptor channels via lateral shunting inhibition is (a) indistinguishable from the multiplicative motion-perception topology, and (b) formally related to a nonlinear property of inhibition in the eye of Limulus. More... »

PAGES

53-66

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00299898

DOI

http://dx.doi.org/10.1007/bf00299898

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015910607

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/6003992


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adaptation, Physiological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Analysis of Variance", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electrophysiology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Insecta", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Light", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reaction Time", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reflex", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Temperature", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Visual Perception", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Zoology, University of California, Los Angeles", 
          "id": "http://www.grid.ac/institutes/grid.19006.3e", 
          "name": [
            "Department of Zoology, University of California, Los Angeles"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thorson", 
        "givenName": "John", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00292106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012884757", 
          "https://doi.org/10.1007/bf00292106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00288819", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025555218", 
          "https://doi.org/10.1007/bf00288819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00274089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014051047", 
          "https://doi.org/10.1007/bf00274089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00341335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018741616", 
          "https://doi.org/10.1007/bf00341335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00388036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013350712", 
          "https://doi.org/10.1007/bf00388036"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1966-05", 
    "datePublishedReg": "1966-05-01", 
    "description": "Small-signal frequency-response measurements of a locust visual reflex in the range 0.0014 cps to 6 cps suggest description via special departures from ordinary linear-system characterization, at both low and high frequencies.At low frequency the response is similar to that of an adapting system having the formal characteristics of fractional-order differentiation. Adjustment of test-pattern luminance from 0.00025 to 1 lambert increases the order of this differentiation by about 0.37. Comparison of intensity-dependent properties of the reflex with related electrophysiological studies of photoreception implies that the frequency dependence of the optomotor response is dominated by receptor dynamics.At high frequency, phase lag is less than that required by minimum-phase linear description of the gain curves. In order to avoid the question of \u201cpredictive tracking\u201d by the locust, a time-and frequency-dependent gain modulation is suggested to account for the less-than-minimum phase property, and shown to be qualitatively compatible with transients in gain at the start of sinusoidal pattern motion.The motion-perception model of Hassenstein and Reichardt, shown previously to predict the gross gain and phase relations of the small-signal locust response, is apparently an inappropriate description of these data since the decisive gain and phase measurements are more plausibly accounted for by intensity-dependent adaptation than by the properties of the model underlying the original prediction. An abstraction of the fundamental properties of their multiplicative interaction of ommatidia, however, can assist electrophysiological search for neural correlates of motion perception; it is shown that, under certain conditions, interaction of receptor channels via lateral shunting inhibition is (a) indistinguishable from the multiplicative motion-perception topology, and (b) formally related to a nonlinear property of inhibition in the eye of Limulus.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf00299898", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1081786", 
        "issn": [
          "0023-5946"
        ], 
        "name": "Kybernetik", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "3"
      }
    ], 
    "keywords": [
      "small-signal frequency response measurements", 
      "small-signal analysis", 
      "frequency response measurements", 
      "minimum phase property", 
      "phase measurements", 
      "phase lag", 
      "nonlinear properties", 
      "phase properties", 
      "frequency dependence", 
      "predictive tracking", 
      "fractional order differentiation", 
      "gain curve", 
      "properties", 
      "motion perception model", 
      "high frequency", 
      "low frequency", 
      "fundamental properties", 
      "linear description", 
      "phase relations", 
      "measurements", 
      "frequency", 
      "tracking", 
      "transients", 
      "motion", 
      "order", 
      "certain conditions", 
      "model", 
      "topology", 
      "gain", 
      "original predictions", 
      "gain modulation", 
      "luminance", 
      "prediction", 
      "inappropriate description", 
      "characteristics", 
      "characterization", 
      "decisive gains", 
      "conditions", 
      "description", 
      "system", 
      "dependence", 
      "curves", 
      "channels", 
      "dynamics", 
      "intensity-dependent properties", 
      "comparison", 
      "pattern motion", 
      "interaction", 
      "time", 
      "lag", 
      "response", 
      "analysis", 
      "CP", 
      "modulation", 
      "data", 
      "departure", 
      "study", 
      "start", 
      "adjustment", 
      "visual reflexes", 
      "relation", 
      "Reichardt", 
      "gross gain", 
      "Hassenstein", 
      "Lambert", 
      "abstraction", 
      "adaptation", 
      "locust", 
      "search", 
      "motion perception", 
      "optomotor response", 
      "differentiation", 
      "eyes", 
      "questions", 
      "ommatidia", 
      "inhibition", 
      "correlates", 
      "perception", 
      "reflex", 
      "eye of Limulus", 
      "formal characteristics", 
      "electrophysiological studies", 
      "receptor dynamics", 
      "multiplicative interaction", 
      "receptor channels", 
      "neural correlates", 
      "photoreception", 
      "Limulus"
    ], 
    "name": "Small-signal analysis of a visual reflex in the locust", 
    "pagination": "53-66", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015910607"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00299898"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "6003992"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00299898", 
      "https://app.dimensions.ai/details/publication/pub.1015910607"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_104.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf00299898"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00299898'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00299898'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00299898'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00299898'


 

This table displays all metadata directly associated to this object as RDF triples.

211 TRIPLES      21 PREDICATES      130 URIs      117 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00299898 schema:about N01cd3d5071334875ab4b2254ecdc741c
2 N144b33d195dc46acb5e6cb52543e38c1
3 N205f2e1fe49a4b208b7ffb8cc5c7592d
4 N2856e4b1794c4140856a2fde02db9bdd
5 N4055af24267648758358798116413c3c
6 N6377fcd090284e559549eda701521983
7 N6a315f5eb69f47d3b06c08cc1f51f69c
8 N814cf9013f984d1394c44de0f804fe22
9 Nb8d90132c24f42dc98bb8cd5d426a79b
10 Ne1394f3c858640eab6729533b3791a92
11 Nfd2b8c01fba94daf8a7f24dc6ae2512a
12 anzsrc-for:17
13 anzsrc-for:1701
14 schema:author N84aa2c3915b04b4090ead0a78cf0cb25
15 schema:citation sg:pub.10.1007/bf00274089
16 sg:pub.10.1007/bf00288819
17 sg:pub.10.1007/bf00292106
18 sg:pub.10.1007/bf00341335
19 sg:pub.10.1007/bf00388036
20 schema:datePublished 1966-05
21 schema:datePublishedReg 1966-05-01
22 schema:description Small-signal frequency-response measurements of a locust visual reflex in the range 0.0014 cps to 6 cps suggest description via special departures from ordinary linear-system characterization, at both low and high frequencies.At low frequency the response is similar to that of an adapting system having the formal characteristics of fractional-order differentiation. Adjustment of test-pattern luminance from 0.00025 to 1 lambert increases the order of this differentiation by about 0.37. Comparison of intensity-dependent properties of the reflex with related electrophysiological studies of photoreception implies that the frequency dependence of the optomotor response is dominated by receptor dynamics.At high frequency, phase lag is less than that required by minimum-phase linear description of the gain curves. In order to avoid the question of “predictive tracking” by the locust, a time-and frequency-dependent gain modulation is suggested to account for the less-than-minimum phase property, and shown to be qualitatively compatible with transients in gain at the start of sinusoidal pattern motion.The motion-perception model of Hassenstein and Reichardt, shown previously to predict the gross gain and phase relations of the small-signal locust response, is apparently an inappropriate description of these data since the decisive gain and phase measurements are more plausibly accounted for by intensity-dependent adaptation than by the properties of the model underlying the original prediction. An abstraction of the fundamental properties of their multiplicative interaction of ommatidia, however, can assist electrophysiological search for neural correlates of motion perception; it is shown that, under certain conditions, interaction of receptor channels via lateral shunting inhibition is (a) indistinguishable from the multiplicative motion-perception topology, and (b) formally related to a nonlinear property of inhibition in the eye of Limulus.
23 schema:genre article
24 schema:isAccessibleForFree false
25 schema:isPartOf N44c4bf43d29b4b0f8a6f3b6065c73cc2
26 N8c430f6850364a399473d3769fc624dd
27 sg:journal.1081786
28 schema:keywords CP
29 Hassenstein
30 Lambert
31 Limulus
32 Reichardt
33 abstraction
34 adaptation
35 adjustment
36 analysis
37 certain conditions
38 channels
39 characteristics
40 characterization
41 comparison
42 conditions
43 correlates
44 curves
45 data
46 decisive gains
47 departure
48 dependence
49 description
50 differentiation
51 dynamics
52 electrophysiological studies
53 eye of Limulus
54 eyes
55 formal characteristics
56 fractional order differentiation
57 frequency
58 frequency dependence
59 frequency response measurements
60 fundamental properties
61 gain
62 gain curve
63 gain modulation
64 gross gain
65 high frequency
66 inappropriate description
67 inhibition
68 intensity-dependent properties
69 interaction
70 lag
71 linear description
72 locust
73 low frequency
74 luminance
75 measurements
76 minimum phase property
77 model
78 modulation
79 motion
80 motion perception
81 motion perception model
82 multiplicative interaction
83 neural correlates
84 nonlinear properties
85 ommatidia
86 optomotor response
87 order
88 original predictions
89 pattern motion
90 perception
91 phase lag
92 phase measurements
93 phase properties
94 phase relations
95 photoreception
96 prediction
97 predictive tracking
98 properties
99 questions
100 receptor channels
101 receptor dynamics
102 reflex
103 relation
104 response
105 search
106 small-signal analysis
107 small-signal frequency response measurements
108 start
109 study
110 system
111 time
112 topology
113 tracking
114 transients
115 visual reflexes
116 schema:name Small-signal analysis of a visual reflex in the locust
117 schema:pagination 53-66
118 schema:productId N054d565cf25c44d3bd826d4a40675dbb
119 N6661a4ac6c35424285e65fb44709c057
120 Na0e2708b1d6d4cc8a98a5fc26c6a60d8
121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015910607
122 https://doi.org/10.1007/bf00299898
123 schema:sdDatePublished 2022-12-01T06:17
124 schema:sdLicense https://scigraph.springernature.com/explorer/license/
125 schema:sdPublisher Nbc40953e45ff4b7fa4a58369009b7cf4
126 schema:url https://doi.org/10.1007/bf00299898
127 sgo:license sg:explorer/license/
128 sgo:sdDataset articles
129 rdf:type schema:ScholarlyArticle
130 N01cd3d5071334875ab4b2254ecdc741c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Electrophysiology
132 rdf:type schema:DefinedTerm
133 N054d565cf25c44d3bd826d4a40675dbb schema:name dimensions_id
134 schema:value pub.1015910607
135 rdf:type schema:PropertyValue
136 N144b33d195dc46acb5e6cb52543e38c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Adaptation, Physiological
138 rdf:type schema:DefinedTerm
139 N205f2e1fe49a4b208b7ffb8cc5c7592d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Animals
141 rdf:type schema:DefinedTerm
142 N2856e4b1794c4140856a2fde02db9bdd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Reflex
144 rdf:type schema:DefinedTerm
145 N4055af24267648758358798116413c3c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Analysis of Variance
147 rdf:type schema:DefinedTerm
148 N44c4bf43d29b4b0f8a6f3b6065c73cc2 schema:issueNumber 2
149 rdf:type schema:PublicationIssue
150 N588064a588c84319947219a4a8fbdf8c schema:affiliation grid-institutes:grid.19006.3e
151 schema:familyName Thorson
152 schema:givenName John
153 rdf:type schema:Person
154 N6377fcd090284e559549eda701521983 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Insecta
156 rdf:type schema:DefinedTerm
157 N6661a4ac6c35424285e65fb44709c057 schema:name doi
158 schema:value 10.1007/bf00299898
159 rdf:type schema:PropertyValue
160 N6a315f5eb69f47d3b06c08cc1f51f69c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Visual Perception
162 rdf:type schema:DefinedTerm
163 N814cf9013f984d1394c44de0f804fe22 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Light
165 rdf:type schema:DefinedTerm
166 N84aa2c3915b04b4090ead0a78cf0cb25 rdf:first N588064a588c84319947219a4a8fbdf8c
167 rdf:rest rdf:nil
168 N8c430f6850364a399473d3769fc624dd schema:volumeNumber 3
169 rdf:type schema:PublicationVolume
170 Na0e2708b1d6d4cc8a98a5fc26c6a60d8 schema:name pubmed_id
171 schema:value 6003992
172 rdf:type schema:PropertyValue
173 Nb8d90132c24f42dc98bb8cd5d426a79b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
174 schema:name Temperature
175 rdf:type schema:DefinedTerm
176 Nbc40953e45ff4b7fa4a58369009b7cf4 schema:name Springer Nature - SN SciGraph project
177 rdf:type schema:Organization
178 Ne1394f3c858640eab6729533b3791a92 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Male
180 rdf:type schema:DefinedTerm
181 Nfd2b8c01fba94daf8a7f24dc6ae2512a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Reaction Time
183 rdf:type schema:DefinedTerm
184 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
185 schema:name Psychology and Cognitive Sciences
186 rdf:type schema:DefinedTerm
187 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
188 schema:name Psychology
189 rdf:type schema:DefinedTerm
190 sg:journal.1081786 schema:issn 0023-5946
191 schema:name Kybernetik
192 schema:publisher Springer Nature
193 rdf:type schema:Periodical
194 sg:pub.10.1007/bf00274089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014051047
195 https://doi.org/10.1007/bf00274089
196 rdf:type schema:CreativeWork
197 sg:pub.10.1007/bf00288819 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025555218
198 https://doi.org/10.1007/bf00288819
199 rdf:type schema:CreativeWork
200 sg:pub.10.1007/bf00292106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012884757
201 https://doi.org/10.1007/bf00292106
202 rdf:type schema:CreativeWork
203 sg:pub.10.1007/bf00341335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018741616
204 https://doi.org/10.1007/bf00341335
205 rdf:type schema:CreativeWork
206 sg:pub.10.1007/bf00388036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013350712
207 https://doi.org/10.1007/bf00388036
208 rdf:type schema:CreativeWork
209 grid-institutes:grid.19006.3e schema:alternateName Department of Zoology, University of California, Los Angeles
210 schema:name Department of Zoology, University of California, Los Angeles
211 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...