The use of cross prediction methods in a practical potato breeding programme View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1988-07

AUTHORS

J. Brown, P. D. S. Caligari, M. F. B. Dale, G. E. L. Swan, G. R. Mackay

ABSTRACT

Most previous studies on cross prediction methods have examined relatively few crosses, particularly in relation to the numbers involved in most breeding programmes. In this paper the feasibility of using cross prediction methods was examined in a practical potato (Solanum tuberosum) breeding scheme by the analyses of progeny from 52 crosses. The variate considered was breeder's preference, a visual assessment made of the harvested tubers to estimate their commercial potential. The results showed that it was possible to identify the superior crosses. Cross prediction based simply on the mean preference scores, averaged over scorers and clones within progenies, estimated on seedlings or first clonal year plants, provided the best estimate of a progeny's performance in the third clonal generation. Predictions based on the expected proportion of clones that would transgress a given target value also provided a good indication of a progeny's potential. The poorest prediction was obtained by using the observed frequency of desirable clones in a progeny sample. The implications for potato breeding are discussed. More... »

PAGES

33-38

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00288828

DOI

http://dx.doi.org/10.1007/bf00288828

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044664993

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24231979


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Scottish Crop Research Institute, Pentlandfield, EH25 9RF, Roslin, Midlothian, Scotland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brown", 
        "givenName": "J.", 
        "id": "sg:person.016555721214.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016555721214.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Scottish Crop Research Institute, Pentlandfield, EH25 9RF, Roslin, Midlothian, Scotland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Caligari", 
        "givenName": "P. D. S.", 
        "id": "sg:person.0602256664.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0602256664.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Scottish Crop Research Institute, Pentlandfield, EH25 9RF, Roslin, Midlothian, Scotland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dale", 
        "givenName": "M. F. B.", 
        "id": "sg:person.07524747324.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07524747324.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Scottish Crop Research Institute, Pentlandfield, EH25 9RF, Roslin, Midlothian, Scotland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Swan", 
        "givenName": "G. E. L.", 
        "id": "sg:person.016610534531.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016610534531.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Scottish Crop Research Institute, Pentlandfield, EH25 9RF, Roslin, Midlothian, Scotland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mackay", 
        "givenName": "G. R.", 
        "id": "sg:person.015574124201.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015574124201.77"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02360366", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008062681", 
          "https://doi.org/10.1007/bf02360366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02360366", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008062681", 
          "https://doi.org/10.1007/bf02360366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1978.42", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008735002", 
          "https://doi.org/10.1038/hdy.1978.42"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1978.42", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008735002", 
          "https://doi.org/10.1038/hdy.1978.42"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02356196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009128231", 
          "https://doi.org/10.1007/bf02356196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02852811", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012278316", 
          "https://doi.org/10.1007/bf02852811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02852811", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012278316", 
          "https://doi.org/10.1007/bf02852811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1744-7348.1987.tb03267.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014306995"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02362021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017647002", 
          "https://doi.org/10.1007/bf02362021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02362021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017647002", 
          "https://doi.org/10.1007/bf02362021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1980.73", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017759402", 
          "https://doi.org/10.1038/hdy.1980.73"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1980.73", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017759402", 
          "https://doi.org/10.1038/hdy.1980.73"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1985.48", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020059702", 
          "https://doi.org/10.1038/hdy.1985.48"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1985.48", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020059702", 
          "https://doi.org/10.1038/hdy.1985.48"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1985.98", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027915392", 
          "https://doi.org/10.1038/hdy.1985.98"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1985.98", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027915392", 
          "https://doi.org/10.1038/hdy.1985.98"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1744-7348.1987.tb03266.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032642996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1988.21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036513936", 
          "https://doi.org/10.1038/hdy.1988.21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1988.21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036513936", 
          "https://doi.org/10.1038/hdy.1988.21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00289277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041057005", 
          "https://doi.org/10.1007/bf00289277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00289277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041057005", 
          "https://doi.org/10.1007/bf00289277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00293344", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042966501", 
          "https://doi.org/10.1007/bf00293344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00293344", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042966501", 
          "https://doi.org/10.1007/bf00293344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1986.139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049579731", 
          "https://doi.org/10.1038/hdy.1986.139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1986.139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049579731", 
          "https://doi.org/10.1038/hdy.1986.139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0021859600047298", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051564313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0021859600047298", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051564313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0021859600047298", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051564313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2135/cropsci1975.0011183x001500010005x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069016766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00709807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086064807", 
          "https://doi.org/10.1007/bf00709807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00709807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086064807", 
          "https://doi.org/10.1007/bf00709807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00024076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086069211", 
          "https://doi.org/10.1007/bf00024076"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1988-07", 
    "datePublishedReg": "1988-07-01", 
    "description": "Most previous studies on cross prediction methods have examined relatively few crosses, particularly in relation to the numbers involved in most breeding programmes. In this paper the feasibility of using cross prediction methods was examined in a practical potato (Solanum tuberosum) breeding scheme by the analyses of progeny from 52 crosses. The variate considered was breeder's preference, a visual assessment made of the harvested tubers to estimate their commercial potential. The results showed that it was possible to identify the superior crosses. Cross prediction based simply on the mean preference scores, averaged over scorers and clones within progenies, estimated on seedlings or first clonal year plants, provided the best estimate of a progeny's performance in the third clonal generation. Predictions based on the expected proportion of clones that would transgress a given target value also provided a good indication of a progeny's potential. The poorest prediction was obtained by using the observed frequency of desirable clones in a progeny sample. The implications for potato breeding are discussed. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf00288828", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135804", 
        "issn": [
          "0040-5752", 
          "1432-2242"
        ], 
        "name": "Theoretical and Applied Genetics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "76"
      }
    ], 
    "name": "The use of cross prediction methods in a practical potato breeding programme", 
    "pagination": "33-38", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00288828"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d4c179879c9eb99444c1ff06b88246a77bb2761fb04975135a4c548b6c0bf70b"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044664993"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0145600"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24231979"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00288828", 
      "https://app.dimensions.ai/details/publication/pub.1044664993"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-15T08:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000374_0000000374/records_119741_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF00288828"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00288828'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00288828'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00288828'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00288828'


 

This table displays all metadata directly associated to this object as RDF triples.

172 TRIPLES      21 PREDICATES      47 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00288828 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N53ab678f242d46baa29e0f7f712bad99
4 schema:citation sg:pub.10.1007/bf00024076
5 sg:pub.10.1007/bf00289277
6 sg:pub.10.1007/bf00293344
7 sg:pub.10.1007/bf00709807
8 sg:pub.10.1007/bf02356196
9 sg:pub.10.1007/bf02360366
10 sg:pub.10.1007/bf02362021
11 sg:pub.10.1007/bf02852811
12 sg:pub.10.1038/hdy.1978.42
13 sg:pub.10.1038/hdy.1980.73
14 sg:pub.10.1038/hdy.1985.48
15 sg:pub.10.1038/hdy.1985.98
16 sg:pub.10.1038/hdy.1986.139
17 sg:pub.10.1038/hdy.1988.21
18 https://doi.org/10.1017/s0021859600047298
19 https://doi.org/10.1111/j.1744-7348.1987.tb03266.x
20 https://doi.org/10.1111/j.1744-7348.1987.tb03267.x
21 https://doi.org/10.2135/cropsci1975.0011183x001500010005x
22 schema:datePublished 1988-07
23 schema:datePublishedReg 1988-07-01
24 schema:description Most previous studies on cross prediction methods have examined relatively few crosses, particularly in relation to the numbers involved in most breeding programmes. In this paper the feasibility of using cross prediction methods was examined in a practical potato (Solanum tuberosum) breeding scheme by the analyses of progeny from 52 crosses. The variate considered was breeder's preference, a visual assessment made of the harvested tubers to estimate their commercial potential. The results showed that it was possible to identify the superior crosses. Cross prediction based simply on the mean preference scores, averaged over scorers and clones within progenies, estimated on seedlings or first clonal year plants, provided the best estimate of a progeny's performance in the third clonal generation. Predictions based on the expected proportion of clones that would transgress a given target value also provided a good indication of a progeny's potential. The poorest prediction was obtained by using the observed frequency of desirable clones in a progeny sample. The implications for potato breeding are discussed.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf Na674e0d8f64640628f50d8e62ef7f30f
29 Nd09adcb94755405392b483c95a9f8f4e
30 sg:journal.1135804
31 schema:name The use of cross prediction methods in a practical potato breeding programme
32 schema:pagination 33-38
33 schema:productId N067b1a6013704a7586ec022ef0f046ac
34 N20db4d5135194f3c8a96063df5f951b6
35 N4093276ccd164e54a5ebc0e2bf310b7f
36 N73e0fac809b7427b8b0879227682360c
37 Ne032090fbd2d4cd1a6e66a241a02c7f5
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044664993
39 https://doi.org/10.1007/bf00288828
40 schema:sdDatePublished 2019-04-15T08:52
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher N704dd142664841a0940f1138b2d7d05e
43 schema:url http://link.springer.com/10.1007/BF00288828
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N02b6987c75a04a74a1bc1c25fcf66162 rdf:first sg:person.07524747324.91
48 rdf:rest Nba1e00c13bc1473f8d45f832f0c7bf5d
49 N067b1a6013704a7586ec022ef0f046ac schema:name readcube_id
50 schema:value d4c179879c9eb99444c1ff06b88246a77bb2761fb04975135a4c548b6c0bf70b
51 rdf:type schema:PropertyValue
52 N076f49c116964f04a7ca74d46895f1cf rdf:first sg:person.015574124201.77
53 rdf:rest rdf:nil
54 N10e838a3702e4f12af30f961cfd7991e schema:name Scottish Crop Research Institute, Pentlandfield, EH25 9RF, Roslin, Midlothian, Scotland
55 rdf:type schema:Organization
56 N20db4d5135194f3c8a96063df5f951b6 schema:name pubmed_id
57 schema:value 24231979
58 rdf:type schema:PropertyValue
59 N24742bd101d2496ca3165dac1deb207e schema:name Scottish Crop Research Institute, Pentlandfield, EH25 9RF, Roslin, Midlothian, Scotland
60 rdf:type schema:Organization
61 N24ff15dd945347608914452486dc0104 schema:name Scottish Crop Research Institute, Pentlandfield, EH25 9RF, Roslin, Midlothian, Scotland
62 rdf:type schema:Organization
63 N30accb17552045afb1e99f9e671c1d92 schema:name Scottish Crop Research Institute, Pentlandfield, EH25 9RF, Roslin, Midlothian, Scotland
64 rdf:type schema:Organization
65 N4093276ccd164e54a5ebc0e2bf310b7f schema:name doi
66 schema:value 10.1007/bf00288828
67 rdf:type schema:PropertyValue
68 N53ab678f242d46baa29e0f7f712bad99 rdf:first sg:person.016555721214.56
69 rdf:rest N6de7446c829f4377b83db8eb6327f249
70 N6de7446c829f4377b83db8eb6327f249 rdf:first sg:person.0602256664.28
71 rdf:rest N02b6987c75a04a74a1bc1c25fcf66162
72 N704dd142664841a0940f1138b2d7d05e schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 N73e0fac809b7427b8b0879227682360c schema:name nlm_unique_id
75 schema:value 0145600
76 rdf:type schema:PropertyValue
77 N95fc13fca0cc47e5a43fe363fbc99892 schema:name Scottish Crop Research Institute, Pentlandfield, EH25 9RF, Roslin, Midlothian, Scotland
78 rdf:type schema:Organization
79 Na674e0d8f64640628f50d8e62ef7f30f schema:issueNumber 1
80 rdf:type schema:PublicationIssue
81 Nba1e00c13bc1473f8d45f832f0c7bf5d rdf:first sg:person.016610534531.17
82 rdf:rest N076f49c116964f04a7ca74d46895f1cf
83 Nd09adcb94755405392b483c95a9f8f4e schema:volumeNumber 76
84 rdf:type schema:PublicationVolume
85 Ne032090fbd2d4cd1a6e66a241a02c7f5 schema:name dimensions_id
86 schema:value pub.1044664993
87 rdf:type schema:PropertyValue
88 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
89 schema:name Mathematical Sciences
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
92 schema:name Statistics
93 rdf:type schema:DefinedTerm
94 sg:journal.1135804 schema:issn 0040-5752
95 1432-2242
96 schema:name Theoretical and Applied Genetics
97 rdf:type schema:Periodical
98 sg:person.015574124201.77 schema:affiliation N24742bd101d2496ca3165dac1deb207e
99 schema:familyName Mackay
100 schema:givenName G. R.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015574124201.77
102 rdf:type schema:Person
103 sg:person.016555721214.56 schema:affiliation N24ff15dd945347608914452486dc0104
104 schema:familyName Brown
105 schema:givenName J.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016555721214.56
107 rdf:type schema:Person
108 sg:person.016610534531.17 schema:affiliation N30accb17552045afb1e99f9e671c1d92
109 schema:familyName Swan
110 schema:givenName G. E. L.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016610534531.17
112 rdf:type schema:Person
113 sg:person.0602256664.28 schema:affiliation N10e838a3702e4f12af30f961cfd7991e
114 schema:familyName Caligari
115 schema:givenName P. D. S.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0602256664.28
117 rdf:type schema:Person
118 sg:person.07524747324.91 schema:affiliation N95fc13fca0cc47e5a43fe363fbc99892
119 schema:familyName Dale
120 schema:givenName M. F. B.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07524747324.91
122 rdf:type schema:Person
123 sg:pub.10.1007/bf00024076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086069211
124 https://doi.org/10.1007/bf00024076
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/bf00289277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041057005
127 https://doi.org/10.1007/bf00289277
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/bf00293344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042966501
130 https://doi.org/10.1007/bf00293344
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/bf00709807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086064807
133 https://doi.org/10.1007/bf00709807
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/bf02356196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009128231
136 https://doi.org/10.1007/bf02356196
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/bf02360366 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008062681
139 https://doi.org/10.1007/bf02360366
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/bf02362021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017647002
142 https://doi.org/10.1007/bf02362021
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/bf02852811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012278316
145 https://doi.org/10.1007/bf02852811
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/hdy.1978.42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008735002
148 https://doi.org/10.1038/hdy.1978.42
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/hdy.1980.73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017759402
151 https://doi.org/10.1038/hdy.1980.73
152 rdf:type schema:CreativeWork
153 sg:pub.10.1038/hdy.1985.48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020059702
154 https://doi.org/10.1038/hdy.1985.48
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/hdy.1985.98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027915392
157 https://doi.org/10.1038/hdy.1985.98
158 rdf:type schema:CreativeWork
159 sg:pub.10.1038/hdy.1986.139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049579731
160 https://doi.org/10.1038/hdy.1986.139
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/hdy.1988.21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036513936
163 https://doi.org/10.1038/hdy.1988.21
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1017/s0021859600047298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051564313
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1111/j.1744-7348.1987.tb03266.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032642996
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1111/j.1744-7348.1987.tb03267.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1014306995
170 rdf:type schema:CreativeWork
171 https://doi.org/10.2135/cropsci1975.0011183x001500010005x schema:sameAs https://app.dimensions.ai/details/publication/pub.1069016766
172 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...