Artifacts in camera based single photon emission tomography due to time activity variation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1987-12

AUTHORS

B. D. Bok, A. N. Bice, M. Clausen, D. F. Wong, H. N. Wagner

ABSTRACT

Image quality in single photon emission computed tomography (SPECT) using a rotating gamma camera is dependent on the time course of the tracer in the field of view. If acquisition times are slow comapred to the tracer turnover, artifacts may occur in the reconstructed images. The properties of such artifacts were studied by computer simulation. Experimental projection data of point sources, cylindrical phantoms, and an anatomically realistic brain phantom were altered by sequentially weighting the projections with a function that varied exponentially or linearly with time. The observed distortion in the reconstructed images could be related to the ratio between the object activity variation and the camera rotation time. If the tracer concentration changed less than a factor of two during one camera rotation then little image distortion was visible although quantitatively the resolution was degraded.If the object's activity variation with time is fast enough to produce noticeable distortion, the artifacts can be reduced by performing multiple, rapid, camera rotations, instead of one rotation, for the same total acquisition time. The proposed procedure is computer storage space intensive and takes longer to produce the transaxial images, but improves image quality. More... »

PAGES

439-442

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00281856

DOI

http://dx.doi.org/10.1007/bf00281856

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022894193

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/3501982


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Image Enhancement", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Structural", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Time Factors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, Emission-Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Service de M\u00e9decine Nucl\u00e9aire et Biophysique, H\u00f4pital Beaujon, F-92110, Clichy, France", 
          "id": "http://www.grid.ac/institutes/grid.411599.1", 
          "name": [
            "Service de M\u00e9decine Nucl\u00e9aire et Biophysique, H\u00f4pital Beaujon, F-92110, Clichy, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bok", 
        "givenName": "B. D.", 
        "id": "sg:person.0627637664.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627637664.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Nuclear Medicine and Radiation Health Sciences, The Johns Hopkins Medical Institutions, Baltimore, Maryland, USA", 
          "id": "http://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Division of Nuclear Medicine and Radiation Health Sciences, The Johns Hopkins Medical Institutions, Baltimore, Maryland, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bice", 
        "givenName": "A. N.", 
        "id": "sg:person.01001272235.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001272235.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, AK St. Georg, Hamburg, Federal Republic of Germany", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Nuclear Medicine, AK St. Georg, Hamburg, Federal Republic of Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Clausen", 
        "givenName": "M.", 
        "id": "sg:person.01370000171.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01370000171.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Nuclear Medicine and Radiation Health Sciences, The Johns Hopkins Medical Institutions, Baltimore, Maryland, USA", 
          "id": "http://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Division of Nuclear Medicine and Radiation Health Sciences, The Johns Hopkins Medical Institutions, Baltimore, Maryland, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wong", 
        "givenName": "D. F.", 
        "id": "sg:person.010017112322.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010017112322.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Nuclear Medicine and Radiation Health Sciences, The Johns Hopkins Medical Institutions, Baltimore, Maryland, USA", 
          "id": "http://www.grid.ac/institutes/grid.21107.35", 
          "name": [
            "Division of Nuclear Medicine and Radiation Health Sciences, The Johns Hopkins Medical Institutions, Baltimore, Maryland, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wagner", 
        "givenName": "H. N.", 
        "id": "sg:person.012144536312.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012144536312.07"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1987-12", 
    "datePublishedReg": "1987-12-01", 
    "description": "Image quality in single photon emission computed tomography (SPECT) using a rotating gamma camera is dependent on the time course of the tracer in the field of view. If acquisition times are slow comapred to the tracer turnover, artifacts may occur in the reconstructed images. The properties of such artifacts were studied by computer simulation. Experimental projection data of point sources, cylindrical phantoms, and an anatomically realistic brain phantom were altered by sequentially weighting the projections with a function that varied exponentially or linearly with time. The observed distortion in the reconstructed images could be related to the ratio between the object activity variation and the camera rotation time. If the tracer concentration changed less than a factor of two during one camera rotation then little image distortion was visible although quantitatively the resolution was degraded.If the object's activity variation with time is fast enough to produce noticeable distortion, the artifacts can be reduced by performing multiple, rapid, camera rotations, instead of one rotation, for the same total acquisition time. The proposed procedure is computer storage space intensive and takes longer to produce the transaxial images, but improves image quality.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf00281856", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297401", 
        "issn": [
          "1619-7070", 
          "1619-7089"
        ], 
        "name": "European Journal of Nuclear Medicine and Molecular Imaging", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "13"
      }
    ], 
    "keywords": [
      "camera rotation", 
      "reconstructed images", 
      "image quality", 
      "little image distortion", 
      "same total acquisition time", 
      "experimental projection data", 
      "realistic brain phantom", 
      "computer storage space", 
      "storage space", 
      "noticeable distortion", 
      "projection data", 
      "field of view", 
      "image distortion", 
      "acquisition time", 
      "camera", 
      "images", 
      "computer simulation", 
      "brain phantom", 
      "such artifacts", 
      "artifacts", 
      "total acquisition time", 
      "distortion", 
      "quality", 
      "rotation time", 
      "phantom", 
      "time", 
      "simulations", 
      "space", 
      "transaxial images", 
      "gamma camera", 
      "view", 
      "projections", 
      "data", 
      "cylindrical phantom", 
      "field", 
      "rotation", 
      "resolution", 
      "single photon emission", 
      "source", 
      "function", 
      "procedure", 
      "emission tomography", 
      "tomography", 
      "photon emission", 
      "observed distortion", 
      "variation", 
      "activity variations", 
      "properties", 
      "point source", 
      "course", 
      "single photon emission tomography", 
      "photon emission tomography", 
      "ratio", 
      "tracer concentration", 
      "emission", 
      "factors", 
      "tracer", 
      "concentration", 
      "time course", 
      "turnover", 
      "tracer turnover", 
      "object activity variation", 
      "camera rotation time", 
      "time activity variation"
    ], 
    "name": "Artifacts in camera based single photon emission tomography due to time activity variation", 
    "pagination": "439-442", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022894193"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00281856"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "3501982"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00281856", 
      "https://app.dimensions.ai/details/publication/pub.1022894193"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_193.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf00281856"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00281856'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00281856'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00281856'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00281856'


 

This table displays all metadata directly associated to this object as RDF triples.

184 TRIPLES      21 PREDICATES      97 URIs      87 LITERALS      11 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00281856 schema:about N4693fd8d416b4bf58c4114be5ea17f5c
2 N60b7b7583dda4371ada5db0cbc0b3de9
3 Nd9db59cfb7bc4bff922816843ea5e375
4 Ne27bae304b06409691ad92b710761c5e
5 anzsrc-for:02
6 anzsrc-for:0299
7 anzsrc-for:11
8 anzsrc-for:1103
9 schema:author N614175b74b9147ba97dc4715ad39f6fe
10 schema:datePublished 1987-12
11 schema:datePublishedReg 1987-12-01
12 schema:description Image quality in single photon emission computed tomography (SPECT) using a rotating gamma camera is dependent on the time course of the tracer in the field of view. If acquisition times are slow comapred to the tracer turnover, artifacts may occur in the reconstructed images. The properties of such artifacts were studied by computer simulation. Experimental projection data of point sources, cylindrical phantoms, and an anatomically realistic brain phantom were altered by sequentially weighting the projections with a function that varied exponentially or linearly with time. The observed distortion in the reconstructed images could be related to the ratio between the object activity variation and the camera rotation time. If the tracer concentration changed less than a factor of two during one camera rotation then little image distortion was visible although quantitatively the resolution was degraded.If the object's activity variation with time is fast enough to produce noticeable distortion, the artifacts can be reduced by performing multiple, rapid, camera rotations, instead of one rotation, for the same total acquisition time. The proposed procedure is computer storage space intensive and takes longer to produce the transaxial images, but improves image quality.
13 schema:genre article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf Nac43d7b08abb4a8bb65a821c6dbc1965
17 Nbe50efd278f3443ea933b15b6cbfef8b
18 sg:journal.1297401
19 schema:keywords acquisition time
20 activity variations
21 artifacts
22 brain phantom
23 camera
24 camera rotation
25 camera rotation time
26 computer simulation
27 computer storage space
28 concentration
29 course
30 cylindrical phantom
31 data
32 distortion
33 emission
34 emission tomography
35 experimental projection data
36 factors
37 field
38 field of view
39 function
40 gamma camera
41 image distortion
42 image quality
43 images
44 little image distortion
45 noticeable distortion
46 object activity variation
47 observed distortion
48 phantom
49 photon emission
50 photon emission tomography
51 point source
52 procedure
53 projection data
54 projections
55 properties
56 quality
57 ratio
58 realistic brain phantom
59 reconstructed images
60 resolution
61 rotation
62 rotation time
63 same total acquisition time
64 simulations
65 single photon emission
66 single photon emission tomography
67 source
68 space
69 storage space
70 such artifacts
71 time
72 time activity variation
73 time course
74 tomography
75 total acquisition time
76 tracer
77 tracer concentration
78 tracer turnover
79 transaxial images
80 turnover
81 variation
82 view
83 schema:name Artifacts in camera based single photon emission tomography due to time activity variation
84 schema:pagination 439-442
85 schema:productId N0d18cdadf32042eaab7aacb164ead55b
86 N67f44dcc927a49cc901aabe3d8c6811e
87 N9f427726b15c4d20a3488043adc24746
88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022894193
89 https://doi.org/10.1007/bf00281856
90 schema:sdDatePublished 2022-01-01T18:03
91 schema:sdLicense https://scigraph.springernature.com/explorer/license/
92 schema:sdPublisher N588ea9997b7c4a0d88871abe7c4595f2
93 schema:url https://doi.org/10.1007/bf00281856
94 sgo:license sg:explorer/license/
95 sgo:sdDataset articles
96 rdf:type schema:ScholarlyArticle
97 N0d18cdadf32042eaab7aacb164ead55b schema:name dimensions_id
98 schema:value pub.1022894193
99 rdf:type schema:PropertyValue
100 N24661d0ad6ae4ac2864608e78a2ef3c4 rdf:first sg:person.010017112322.78
101 rdf:rest Nea299ad3fbb447b6a7b61276f59130f6
102 N4693fd8d416b4bf58c4114be5ea17f5c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Image Enhancement
104 rdf:type schema:DefinedTerm
105 N588ea9997b7c4a0d88871abe7c4595f2 schema:name Springer Nature - SN SciGraph project
106 rdf:type schema:Organization
107 N60b7b7583dda4371ada5db0cbc0b3de9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Tomography, Emission-Computed
109 rdf:type schema:DefinedTerm
110 N614175b74b9147ba97dc4715ad39f6fe rdf:first sg:person.0627637664.57
111 rdf:rest Nae9ec1dc9e2449b98c774d96d3e851da
112 N67f44dcc927a49cc901aabe3d8c6811e schema:name doi
113 schema:value 10.1007/bf00281856
114 rdf:type schema:PropertyValue
115 N9f427726b15c4d20a3488043adc24746 schema:name pubmed_id
116 schema:value 3501982
117 rdf:type schema:PropertyValue
118 Nac43d7b08abb4a8bb65a821c6dbc1965 schema:issueNumber 9
119 rdf:type schema:PublicationIssue
120 Nae9ec1dc9e2449b98c774d96d3e851da rdf:first sg:person.01001272235.87
121 rdf:rest Nd4de420105c144dd9493dafa3d0632c6
122 Nbe50efd278f3443ea933b15b6cbfef8b schema:volumeNumber 13
123 rdf:type schema:PublicationVolume
124 Nd4de420105c144dd9493dafa3d0632c6 rdf:first sg:person.01370000171.53
125 rdf:rest N24661d0ad6ae4ac2864608e78a2ef3c4
126 Nd9db59cfb7bc4bff922816843ea5e375 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Time Factors
128 rdf:type schema:DefinedTerm
129 Ne27bae304b06409691ad92b710761c5e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Models, Structural
131 rdf:type schema:DefinedTerm
132 Nea299ad3fbb447b6a7b61276f59130f6 rdf:first sg:person.012144536312.07
133 rdf:rest rdf:nil
134 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
135 schema:name Physical Sciences
136 rdf:type schema:DefinedTerm
137 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
138 schema:name Other Physical Sciences
139 rdf:type schema:DefinedTerm
140 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
141 schema:name Medical and Health Sciences
142 rdf:type schema:DefinedTerm
143 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
144 schema:name Clinical Sciences
145 rdf:type schema:DefinedTerm
146 sg:journal.1297401 schema:issn 1619-7070
147 1619-7089
148 schema:name European Journal of Nuclear Medicine and Molecular Imaging
149 schema:publisher Springer Nature
150 rdf:type schema:Periodical
151 sg:person.01001272235.87 schema:affiliation grid-institutes:grid.21107.35
152 schema:familyName Bice
153 schema:givenName A. N.
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001272235.87
155 rdf:type schema:Person
156 sg:person.010017112322.78 schema:affiliation grid-institutes:grid.21107.35
157 schema:familyName Wong
158 schema:givenName D. F.
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010017112322.78
160 rdf:type schema:Person
161 sg:person.012144536312.07 schema:affiliation grid-institutes:grid.21107.35
162 schema:familyName Wagner
163 schema:givenName H. N.
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012144536312.07
165 rdf:type schema:Person
166 sg:person.01370000171.53 schema:affiliation grid-institutes:None
167 schema:familyName Clausen
168 schema:givenName M.
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01370000171.53
170 rdf:type schema:Person
171 sg:person.0627637664.57 schema:affiliation grid-institutes:grid.411599.1
172 schema:familyName Bok
173 schema:givenName B. D.
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627637664.57
175 rdf:type schema:Person
176 grid-institutes:None schema:alternateName Department of Nuclear Medicine, AK St. Georg, Hamburg, Federal Republic of Germany
177 schema:name Department of Nuclear Medicine, AK St. Georg, Hamburg, Federal Republic of Germany
178 rdf:type schema:Organization
179 grid-institutes:grid.21107.35 schema:alternateName Division of Nuclear Medicine and Radiation Health Sciences, The Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
180 schema:name Division of Nuclear Medicine and Radiation Health Sciences, The Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
181 rdf:type schema:Organization
182 grid-institutes:grid.411599.1 schema:alternateName Service de Médecine Nucléaire et Biophysique, Hôpital Beaujon, F-92110, Clichy, France
183 schema:name Service de Médecine Nucléaire et Biophysique, Hôpital Beaujon, F-92110, Clichy, France
184 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...