Pontryagin's principle for control problems in age-dependent population dynamics View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1985-12

AUTHORS

Martin Brokate

ABSTRACT

In this paper, Pontryagin's principle is proved for a fairly general problem of optimal control of populations with continuous time and age variable. As a consequence, maximum principles are developed for an optimal harvesting problem and a problem of optimal birth control.

PAGES

75-101

References to SciGraph publications

  • 1977. Convex Analysis and Measurable Multifunctions in NONE
  • 1981-12. On the optimal harvesting of persistent age-structured populations in JOURNAL OF MATHEMATICAL BIOLOGY
  • 1974-09. Non-linear age-dependent population dynamics in ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS
  • 1979-03. Regularity and stability for the mathematical programming problem in Banach spaces in APPLIED MATHEMATICS & OPTIMIZATION
  • Journal

    TITLE

    Journal of Mathematical Biology

    ISSUE

    1

    VOLUME

    23

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/bf00276559

    DOI

    http://dx.doi.org/10.1007/bf00276559

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1033714051

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/4078500


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Augsburg", 
              "id": "https://www.grid.ac/institutes/grid.7307.3", 
              "name": [
                "Institut f. Mathematik, Universit\u00e4t Augsburg, D-8900, Augsburg, Federal Republic of Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Brokate", 
            "givenName": "Martin", 
            "id": "sg:person.012117736427.77", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012117736427.77"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0025-5564(81)90015-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000506210"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0025-5564(79)90086-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001019307"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/b978-0-12-148360-9.50014-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002699926"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1006545122", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0087685", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006545122", 
              "https://doi.org/10.1007/bfb0087685"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0087685", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006545122", 
              "https://doi.org/10.1007/bfb0087685"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00275209", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011643659", 
              "https://doi.org/10.1007/bf00275209"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00275209", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011643659", 
              "https://doi.org/10.1007/bf00275209"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-247x(80)90042-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017308094"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0022-5193(83)90242-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045115443"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01442543", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048539132", 
              "https://doi.org/10.1007/bf01442543"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01442543", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048539132", 
              "https://doi.org/10.1007/bf01442543"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00250793", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051272341", 
              "https://doi.org/10.1007/bf00250793"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00250793", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051272341", 
              "https://doi.org/10.1007/bf00250793"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1985-12", 
        "datePublishedReg": "1985-12-01", 
        "description": "In this paper, Pontryagin's principle is proved for a fairly general problem of optimal control of populations with continuous time and age variable. As a consequence, maximum principles are developed for an optimal harvesting problem and a problem of optimal birth control.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/bf00276559", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1081642", 
            "issn": [
              "0303-6812", 
              "1432-1416"
            ], 
            "name": "Journal of Mathematical Biology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "23"
          }
        ], 
        "name": "Pontryagin's principle for control problems in age-dependent population dynamics", 
        "pagination": "75-101", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "a09a752a0c22553f36b543191370f62cd07c89ffd2f41fae7ddf11207e8b4654"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "4078500"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "7502105"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/bf00276559"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1033714051"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/bf00276559", 
          "https://app.dimensions.ai/details/publication/pub.1033714051"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:48", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130793_00000003.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/BF00276559"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00276559'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00276559'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00276559'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00276559'


     

    This table displays all metadata directly associated to this object as RDF triples.

    94 TRIPLES      20 PREDICATES      37 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/bf00276559 schema:author N75b7e824a59741d48364c82fb5a85d81
    2 schema:citation sg:pub.10.1007/bf00250793
    3 sg:pub.10.1007/bf00275209
    4 sg:pub.10.1007/bf01442543
    5 sg:pub.10.1007/bfb0087685
    6 https://app.dimensions.ai/details/publication/pub.1006545122
    7 https://doi.org/10.1016/0022-247x(80)90042-6
    8 https://doi.org/10.1016/0022-5193(83)90242-4
    9 https://doi.org/10.1016/0025-5564(79)90086-5
    10 https://doi.org/10.1016/0025-5564(81)90015-8
    11 https://doi.org/10.1016/b978-0-12-148360-9.50014-7
    12 schema:datePublished 1985-12
    13 schema:datePublishedReg 1985-12-01
    14 schema:description In this paper, Pontryagin's principle is proved for a fairly general problem of optimal control of populations with continuous time and age variable. As a consequence, maximum principles are developed for an optimal harvesting problem and a problem of optimal birth control.
    15 schema:genre research_article
    16 schema:inLanguage en
    17 schema:isAccessibleForFree false
    18 schema:isPartOf N07af608a2b084d5fbb96653f9be1376d
    19 N0d34694a7f6e4553805ea81e70e4665f
    20 sg:journal.1081642
    21 schema:name Pontryagin's principle for control problems in age-dependent population dynamics
    22 schema:pagination 75-101
    23 schema:productId N4b2876caf3b64a62be516112ca4cd1fa
    24 N6f923579a3aa45f98f33b4c73ea10397
    25 N814d0619a4b94982b32c1b7ee7653312
    26 Na0bcc96c42b14fbfb5d0ab1d749c723a
    27 Nc7aad705db59492b8b11f14f18e155ad
    28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033714051
    29 https://doi.org/10.1007/bf00276559
    30 schema:sdDatePublished 2019-04-11T13:48
    31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    32 schema:sdPublisher N585e09bab211416e8698672b78844e65
    33 schema:url http://link.springer.com/10.1007/BF00276559
    34 sgo:license sg:explorer/license/
    35 sgo:sdDataset articles
    36 rdf:type schema:ScholarlyArticle
    37 N07af608a2b084d5fbb96653f9be1376d schema:volumeNumber 23
    38 rdf:type schema:PublicationVolume
    39 N0d34694a7f6e4553805ea81e70e4665f schema:issueNumber 1
    40 rdf:type schema:PublicationIssue
    41 N4b2876caf3b64a62be516112ca4cd1fa schema:name pubmed_id
    42 schema:value 4078500
    43 rdf:type schema:PropertyValue
    44 N585e09bab211416e8698672b78844e65 schema:name Springer Nature - SN SciGraph project
    45 rdf:type schema:Organization
    46 N6f923579a3aa45f98f33b4c73ea10397 schema:name doi
    47 schema:value 10.1007/bf00276559
    48 rdf:type schema:PropertyValue
    49 N75b7e824a59741d48364c82fb5a85d81 rdf:first sg:person.012117736427.77
    50 rdf:rest rdf:nil
    51 N814d0619a4b94982b32c1b7ee7653312 schema:name dimensions_id
    52 schema:value pub.1033714051
    53 rdf:type schema:PropertyValue
    54 Na0bcc96c42b14fbfb5d0ab1d749c723a schema:name nlm_unique_id
    55 schema:value 7502105
    56 rdf:type schema:PropertyValue
    57 Nc7aad705db59492b8b11f14f18e155ad schema:name readcube_id
    58 schema:value a09a752a0c22553f36b543191370f62cd07c89ffd2f41fae7ddf11207e8b4654
    59 rdf:type schema:PropertyValue
    60 sg:journal.1081642 schema:issn 0303-6812
    61 1432-1416
    62 schema:name Journal of Mathematical Biology
    63 rdf:type schema:Periodical
    64 sg:person.012117736427.77 schema:affiliation https://www.grid.ac/institutes/grid.7307.3
    65 schema:familyName Brokate
    66 schema:givenName Martin
    67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012117736427.77
    68 rdf:type schema:Person
    69 sg:pub.10.1007/bf00250793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051272341
    70 https://doi.org/10.1007/bf00250793
    71 rdf:type schema:CreativeWork
    72 sg:pub.10.1007/bf00275209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011643659
    73 https://doi.org/10.1007/bf00275209
    74 rdf:type schema:CreativeWork
    75 sg:pub.10.1007/bf01442543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048539132
    76 https://doi.org/10.1007/bf01442543
    77 rdf:type schema:CreativeWork
    78 sg:pub.10.1007/bfb0087685 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006545122
    79 https://doi.org/10.1007/bfb0087685
    80 rdf:type schema:CreativeWork
    81 https://app.dimensions.ai/details/publication/pub.1006545122 schema:CreativeWork
    82 https://doi.org/10.1016/0022-247x(80)90042-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017308094
    83 rdf:type schema:CreativeWork
    84 https://doi.org/10.1016/0022-5193(83)90242-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045115443
    85 rdf:type schema:CreativeWork
    86 https://doi.org/10.1016/0025-5564(79)90086-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001019307
    87 rdf:type schema:CreativeWork
    88 https://doi.org/10.1016/0025-5564(81)90015-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000506210
    89 rdf:type schema:CreativeWork
    90 https://doi.org/10.1016/b978-0-12-148360-9.50014-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002699926
    91 rdf:type schema:CreativeWork
    92 https://www.grid.ac/institutes/grid.7307.3 schema:alternateName University of Augsburg
    93 schema:name Institut f. Mathematik, Universität Augsburg, D-8900, Augsburg, Federal Republic of Germany
    94 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...