The use of specialised transducing phages in the amplification of enzyme production View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1976-01

AUTHORS

Anne Moir, W. J. Brammar

ABSTRACT

Two types of λtrp phages have been used as model systems to investigate ways of optimising the expression of bacterial genes from transducing phage genomes.Excellent yields of trp enzymes were achieved by infecting a trpR− host with Q− or Q−Q−S− derivatives of λtrpAM1, which expresses its trp genese exclusively from the trp promoter. The five trp geneproducts constituted more than 50% of the total soluble protein of infected cells under these conditions, and an even higher proportion of the protein synthesized after infection. In a trpR+ host, phage DNA replication was easily able to override tryptophan-mediated repression by titration of the trp repressor protein. N− derivatives of λtrp phages carrying the trp promoter were equally productive, while having the advantage of being much simpler to construct and propagate.λtrp phages lacking the trp promoter were used to investigate ways of optimising gene expression initiated at the phage promoter, PL. Though very powerful, the latter promoter is more difficult to harness then the trp promoter. Derepression of transcription from PL by the use of cro− mutations is accompanied by poor replication of transducing phage DNA. Attempts to circumvent this difficulty using virulent of cro, cll double mutants have not been successful. Nevertheless, cells infected with a λtrp phage expressing its trp genes exclusively from PL made up to 16 per cent of their protein as trp gene-products. More... »

PAGES

87-99

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00275963

DOI

http://dx.doi.org/10.1007/bf00275963

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032740700

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/796672


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Anthranilate Synthase", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Coliphages", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA, Viral", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electrophoresis, Polyacrylamide Gel", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Escherichia coli", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mutation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Recombination, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transduction, Genetic", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Molecular Biology, University of Edinburgh, Edinburgh, UK", 
          "id": "http://www.grid.ac/institutes/grid.4305.2", 
          "name": [
            "Department of Molecular Biology, University of Edinburgh, Edinburgh, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moir", 
        "givenName": "Anne", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Molecular Biology, University of Edinburgh, Edinburgh, UK", 
          "id": "http://www.grid.ac/institutes/grid.4305.2", 
          "name": [
            "Department of Molecular Biology, University of Edinburgh, Edinburgh, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brammar", 
        "givenName": "W. J.", 
        "id": "sg:person.01274616414.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274616414.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/251476a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018275687", 
          "https://doi.org/10.1038/251476a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00268089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022309883", 
          "https://doi.org/10.1007/bf00268089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00267155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032155573", 
          "https://doi.org/10.1007/bf00267155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00270514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045713554", 
          "https://doi.org/10.1007/bf00270514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/227680a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010419937", 
          "https://doi.org/10.1038/227680a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00267157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042114049", 
          "https://doi.org/10.1007/bf00267157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00283359", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013076146", 
          "https://doi.org/10.1007/bf00283359"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1976-01", 
    "datePublishedReg": "1976-01-01", 
    "description": "Two types of \u03bbtrp phages have been used as model systems to investigate ways of optimising the expression of bacterial genes from transducing phage genomes.Excellent yields of trp enzymes were achieved by infecting a trpR\u2212 host with Q\u2212 or Q\u2212Q\u2212S\u2212 derivatives of \u03bbtrpAM1, which expresses its trp genese exclusively from the trp promoter. The five trp geneproducts constituted more than 50% of the total soluble protein of infected cells under these conditions, and an even higher proportion of the protein synthesized after infection. In a trpR+ host, phage DNA replication was easily able to override tryptophan-mediated repression by titration of the trp repressor protein. N\u2212 derivatives of \u03bbtrp phages carrying the trp promoter were equally productive, while having the advantage of being much simpler to construct and propagate.\u03bbtrp phages lacking the trp promoter were used to investigate ways of optimising gene expression initiated at the phage promoter, PL. Though very powerful, the latter promoter is more difficult to harness then the trp promoter. Derepression of transcription from PL by the use of cro\u2212 mutations is accompanied by poor replication of transducing phage DNA. Attempts to circumvent this difficulty using virulent of cro, cll double mutants have not been successful. Nevertheless, cells infected with a \u03bbtrp phage expressing its trp genes exclusively from PL made up to 16 per cent of their protein as trp gene-products.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf00275963", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297380", 
        "issn": [
          "1617-4615", 
          "1432-1874"
        ], 
        "name": "Molecular Genetics and Genomics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "149"
      }
    ], 
    "keywords": [
      "trp promoter", 
      "\u03bbtrp phages", 
      "derepression of transcription", 
      "phage DNA replication", 
      "total soluble protein", 
      "Trp repressor protein", 
      "trp enzymes", 
      "latter promoter", 
      "trp genes", 
      "bacterial genes", 
      "repressor protein", 
      "double mutant", 
      "DNA replication", 
      "phage genome", 
      "phage promoters", 
      "gene expression", 
      "phage DNA", 
      "soluble protein", 
      "promoter", 
      "phages", 
      "protein", 
      "enzyme production", 
      "infected cells", 
      "model system", 
      "genes", 
      "host", 
      "replication", 
      "expression", 
      "genome", 
      "cells", 
      "derepression", 
      "poor replication", 
      "mutants", 
      "transcription", 
      "repression", 
      "DNA", 
      "mutations", 
      "enzyme", 
      "virulent", 
      "higher proportion", 
      "Trp", 
      "tryptophan", 
      "amplification", 
      "production", 
      "yield", 
      "CrO", 
      "Genese", 
      "infection", 
      "derivatives", 
      "proportion", 
      "types", 
      "PL", 
      "conditions", 
      "titration", 
      "use", 
      "system", 
      "per cent", 
      "attempt", 
      "way", 
      "advantages", 
      "cent", 
      "difficulties", 
      "excellent yields"
    ], 
    "name": "The use of specialised transducing phages in the amplification of enzyme production", 
    "pagination": "87-99", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032740700"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00275963"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "796672"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00275963", 
      "https://app.dimensions.ai/details/publication/pub.1032740700"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T16:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_113.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf00275963"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00275963'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00275963'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00275963'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00275963'


 

This table displays all metadata directly associated to this object as RDF triples.

198 TRIPLES      21 PREDICATES      106 URIs      91 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00275963 schema:about N2e510322b6f340bab516938b9f2cb3f5
2 N60d3c6b04abd4374b77703550e12a1fd
3 N6cc5ec1c73f7428e95ddf1bd37f6b913
4 N9a1eb7e935184253a031706fa9301c9a
5 Na1b19c88e59847e089c967488d748183
6 Nb8a5ab5a9e974416a6d6f04ee41f82e4
7 Nc790f80b01fc45849e4096fe7208ee38
8 Ncc6823037619405bb09c60c58680ded6
9 Ncd952c401f8c49b9ae38fd80dfda8269
10 Ncfb89f093de54058ae6696b4b4e1a615
11 anzsrc-for:06
12 anzsrc-for:0604
13 schema:author N5b666766ed0041b6a8fd5ceb71ae19ad
14 schema:citation sg:pub.10.1007/bf00267155
15 sg:pub.10.1007/bf00267157
16 sg:pub.10.1007/bf00268089
17 sg:pub.10.1007/bf00270514
18 sg:pub.10.1007/bf00283359
19 sg:pub.10.1038/227680a0
20 sg:pub.10.1038/251476a0
21 schema:datePublished 1976-01
22 schema:datePublishedReg 1976-01-01
23 schema:description Two types of λtrp phages have been used as model systems to investigate ways of optimising the expression of bacterial genes from transducing phage genomes.Excellent yields of trp enzymes were achieved by infecting a trpR− host with Q− or Q−Q−S− derivatives of λtrpAM1, which expresses its trp genese exclusively from the trp promoter. The five trp geneproducts constituted more than 50% of the total soluble protein of infected cells under these conditions, and an even higher proportion of the protein synthesized after infection. In a trpR+ host, phage DNA replication was easily able to override tryptophan-mediated repression by titration of the trp repressor protein. N− derivatives of λtrp phages carrying the trp promoter were equally productive, while having the advantage of being much simpler to construct and propagate.λtrp phages lacking the trp promoter were used to investigate ways of optimising gene expression initiated at the phage promoter, PL. Though very powerful, the latter promoter is more difficult to harness then the trp promoter. Derepression of transcription from PL by the use of cro− mutations is accompanied by poor replication of transducing phage DNA. Attempts to circumvent this difficulty using virulent of cro, cll double mutants have not been successful. Nevertheless, cells infected with a λtrp phage expressing its trp genes exclusively from PL made up to 16 per cent of their protein as trp gene-products.
24 schema:genre article
25 schema:isAccessibleForFree false
26 schema:isPartOf N059ff054119441f6af16d1f25163c155
27 N6b4d46d49bc34a97b47c1756753bf108
28 sg:journal.1297380
29 schema:keywords CrO
30 DNA
31 DNA replication
32 Genese
33 PL
34 Trp
35 Trp repressor protein
36 advantages
37 amplification
38 attempt
39 bacterial genes
40 cells
41 cent
42 conditions
43 derepression
44 derepression of transcription
45 derivatives
46 difficulties
47 double mutant
48 enzyme
49 enzyme production
50 excellent yields
51 expression
52 gene expression
53 genes
54 genome
55 higher proportion
56 host
57 infected cells
58 infection
59 latter promoter
60 model system
61 mutants
62 mutations
63 per cent
64 phage DNA
65 phage DNA replication
66 phage genome
67 phage promoters
68 phages
69 poor replication
70 production
71 promoter
72 proportion
73 protein
74 replication
75 repression
76 repressor protein
77 soluble protein
78 system
79 titration
80 total soluble protein
81 transcription
82 trp enzymes
83 trp genes
84 trp promoter
85 tryptophan
86 types
87 use
88 virulent
89 way
90 yield
91 λtrp phages
92 schema:name The use of specialised transducing phages in the amplification of enzyme production
93 schema:pagination 87-99
94 schema:productId N432d8a06ddff431cbefa58c7e4171ca4
95 Nb0620e01e0114a468df40d66c1da5649
96 Ncb95832356754ced93d5c2d5a620c7c4
97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032740700
98 https://doi.org/10.1007/bf00275963
99 schema:sdDatePublished 2022-08-04T16:48
100 schema:sdLicense https://scigraph.springernature.com/explorer/license/
101 schema:sdPublisher N09592354682941ee89dfc7b90e504a0d
102 schema:url https://doi.org/10.1007/bf00275963
103 sgo:license sg:explorer/license/
104 sgo:sdDataset articles
105 rdf:type schema:ScholarlyArticle
106 N059ff054119441f6af16d1f25163c155 schema:issueNumber 1
107 rdf:type schema:PublicationIssue
108 N09592354682941ee89dfc7b90e504a0d schema:name Springer Nature - SN SciGraph project
109 rdf:type schema:Organization
110 N2e510322b6f340bab516938b9f2cb3f5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name DNA, Bacterial
112 rdf:type schema:DefinedTerm
113 N432d8a06ddff431cbefa58c7e4171ca4 schema:name doi
114 schema:value 10.1007/bf00275963
115 rdf:type schema:PropertyValue
116 N5b666766ed0041b6a8fd5ceb71ae19ad rdf:first Ne8cb7df28fbe4c1f890b85c0ef5cfb4a
117 rdf:rest N8bc01be6932e4e2ab74f43a6aeffdf0d
118 N60d3c6b04abd4374b77703550e12a1fd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Escherichia coli
120 rdf:type schema:DefinedTerm
121 N6b4d46d49bc34a97b47c1756753bf108 schema:volumeNumber 149
122 rdf:type schema:PublicationVolume
123 N6cc5ec1c73f7428e95ddf1bd37f6b913 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Coliphages
125 rdf:type schema:DefinedTerm
126 N8bc01be6932e4e2ab74f43a6aeffdf0d rdf:first sg:person.01274616414.41
127 rdf:rest rdf:nil
128 N9a1eb7e935184253a031706fa9301c9a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Recombination, Genetic
130 rdf:type schema:DefinedTerm
131 Na1b19c88e59847e089c967488d748183 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Anthranilate Synthase
133 rdf:type schema:DefinedTerm
134 Nb0620e01e0114a468df40d66c1da5649 schema:name dimensions_id
135 schema:value pub.1032740700
136 rdf:type schema:PropertyValue
137 Nb8a5ab5a9e974416a6d6f04ee41f82e4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Electrophoresis, Polyacrylamide Gel
139 rdf:type schema:DefinedTerm
140 Nc790f80b01fc45849e4096fe7208ee38 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name DNA, Viral
142 rdf:type schema:DefinedTerm
143 Ncb95832356754ced93d5c2d5a620c7c4 schema:name pubmed_id
144 schema:value 796672
145 rdf:type schema:PropertyValue
146 Ncc6823037619405bb09c60c58680ded6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Mutation
148 rdf:type schema:DefinedTerm
149 Ncd952c401f8c49b9ae38fd80dfda8269 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Transduction, Genetic
151 rdf:type schema:DefinedTerm
152 Ncfb89f093de54058ae6696b4b4e1a615 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Genetic Techniques
154 rdf:type schema:DefinedTerm
155 Ne8cb7df28fbe4c1f890b85c0ef5cfb4a schema:affiliation grid-institutes:grid.4305.2
156 schema:familyName Moir
157 schema:givenName Anne
158 rdf:type schema:Person
159 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
160 schema:name Biological Sciences
161 rdf:type schema:DefinedTerm
162 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
163 schema:name Genetics
164 rdf:type schema:DefinedTerm
165 sg:journal.1297380 schema:issn 1432-1874
166 1617-4615
167 schema:name Molecular Genetics and Genomics
168 schema:publisher Springer Nature
169 rdf:type schema:Periodical
170 sg:person.01274616414.41 schema:affiliation grid-institutes:grid.4305.2
171 schema:familyName Brammar
172 schema:givenName W. J.
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274616414.41
174 rdf:type schema:Person
175 sg:pub.10.1007/bf00267155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032155573
176 https://doi.org/10.1007/bf00267155
177 rdf:type schema:CreativeWork
178 sg:pub.10.1007/bf00267157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042114049
179 https://doi.org/10.1007/bf00267157
180 rdf:type schema:CreativeWork
181 sg:pub.10.1007/bf00268089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022309883
182 https://doi.org/10.1007/bf00268089
183 rdf:type schema:CreativeWork
184 sg:pub.10.1007/bf00270514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045713554
185 https://doi.org/10.1007/bf00270514
186 rdf:type schema:CreativeWork
187 sg:pub.10.1007/bf00283359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013076146
188 https://doi.org/10.1007/bf00283359
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/227680a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010419937
191 https://doi.org/10.1038/227680a0
192 rdf:type schema:CreativeWork
193 sg:pub.10.1038/251476a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018275687
194 https://doi.org/10.1038/251476a0
195 rdf:type schema:CreativeWork
196 grid-institutes:grid.4305.2 schema:alternateName Department of Molecular Biology, University of Edinburgh, Edinburgh, UK
197 schema:name Department of Molecular Biology, University of Edinburgh, Edinburgh, UK
198 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...