Simplified neuron model as a principal component analyzer View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1982-11

AUTHORS

Erkki Oja

ABSTRACT

A simple linear neuron model with constrained Hebbian-type synaptic modification is analyzed and a new class of unconstrained learning rules is derived. It is shown that the model neuron tends to extract the principal component from a stationary input vector sequence.

PAGES

267-273

Journal

TITLE

Journal of Mathematical Biology

ISSUE

3

VOLUME

15

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00275687

DOI

http://dx.doi.org/10.1007/bf00275687

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1041038550

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/7153672


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Neurological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neurons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Synapses", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Mathematics, University of Kuopio, 70100, Kuopio 10, Finland", 
          "id": "http://www.grid.ac/institutes/grid.9668.1", 
          "name": [
            "Institute of Mathematics, University of Kuopio, 70100, Kuopio 10, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oja", 
        "givenName": "Erkki", 
        "id": "sg:person.01111267524.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111267524.42"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00288907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020503948", 
          "https://doi.org/10.1007/bf00288907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-9352-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019074520", 
          "https://doi.org/10.1007/978-1-4684-9352-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00337432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044501062", 
          "https://doi.org/10.1007/bf00337432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02478259", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028715170", 
          "https://doi.org/10.1007/bf02478259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00337288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009635558", 
          "https://doi.org/10.1007/bf00337288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02459570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026163953", 
          "https://doi.org/10.1007/bf02459570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00337414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027306129", 
          "https://doi.org/10.1007/bf00337414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00319777", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026631832", 
          "https://doi.org/10.1007/bf00319777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03380115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084017657", 
          "https://doi.org/10.1007/bf03380115"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1982-11", 
    "datePublishedReg": "1982-11-01", 
    "description": "A simple linear neuron model with constrained Hebbian-type synaptic modification is analyzed and a new class of unconstrained learning rules is derived. It is shown that the model neuron tends to extract the principal component from a stationary input vector sequence.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf00275687", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1081642", 
        "issn": [
          "0303-6812", 
          "1432-1416"
        ], 
        "name": "Journal of Mathematical Biology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "15"
      }
    ], 
    "keywords": [
      "synaptic modification", 
      "model neurons", 
      "neurons", 
      "neuron model", 
      "new class", 
      "model", 
      "modification", 
      "components", 
      "principal components", 
      "simplified neuron model", 
      "analyzer", 
      "learning rule", 
      "sequence", 
      "class", 
      "vector sequences", 
      "rules", 
      "linear neuron model", 
      "input vector sequence", 
      "principal component analyzers"
    ], 
    "name": "Simplified neuron model as a principal component analyzer", 
    "pagination": "267-273", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1041038550"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00275687"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "7153672"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00275687", 
      "https://app.dimensions.ai/details/publication/pub.1041038550"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_167.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf00275687"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00275687'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00275687'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00275687'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00275687'


 

This table displays all metadata directly associated to this object as RDF triples.

136 TRIPLES      21 PREDICATES      59 URIs      42 LITERALS      12 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00275687 schema:about N30ecbc047cd544b6aa400fc330336d20
2 N94066da24a2743f4ae0fb535aa4e387b
3 Nb2d712d4bc894f1884b114ae01b89793
4 Nc25f983299154fe68a7ab781eafda7e8
5 Ne5b23f6786454fce823aeb8ff19c68db
6 anzsrc-for:01
7 anzsrc-for:06
8 schema:author N97927ecc429d40cda60561803d0b54e1
9 schema:citation sg:pub.10.1007/978-1-4684-9352-8
10 sg:pub.10.1007/bf00288907
11 sg:pub.10.1007/bf00319777
12 sg:pub.10.1007/bf00337288
13 sg:pub.10.1007/bf00337414
14 sg:pub.10.1007/bf00337432
15 sg:pub.10.1007/bf02459570
16 sg:pub.10.1007/bf02478259
17 sg:pub.10.1007/bf03380115
18 schema:datePublished 1982-11
19 schema:datePublishedReg 1982-11-01
20 schema:description A simple linear neuron model with constrained Hebbian-type synaptic modification is analyzed and a new class of unconstrained learning rules is derived. It is shown that the model neuron tends to extract the principal component from a stationary input vector sequence.
21 schema:genre article
22 schema:isAccessibleForFree false
23 schema:isPartOf N8f2a55804c91486d9381ecb924dbe911
24 N8f4418a58e344404ae646077e6bbae60
25 sg:journal.1081642
26 schema:keywords analyzer
27 class
28 components
29 input vector sequence
30 learning rule
31 linear neuron model
32 model
33 model neurons
34 modification
35 neuron model
36 neurons
37 new class
38 principal component analyzers
39 principal components
40 rules
41 sequence
42 simplified neuron model
43 synaptic modification
44 vector sequences
45 schema:name Simplified neuron model as a principal component analyzer
46 schema:pagination 267-273
47 schema:productId N2616ce1e8fc54810b34813f4bb838290
48 N33e6ee6f896e4928bb2dbfc206937574
49 N5aefeccc894e4cd7a4a8f6c7b2c4d1d2
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041038550
51 https://doi.org/10.1007/bf00275687
52 schema:sdDatePublished 2022-09-02T15:45
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N7e6c1231d3ec4606b4bfaf7505022269
55 schema:url https://doi.org/10.1007/bf00275687
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N2616ce1e8fc54810b34813f4bb838290 schema:name doi
60 schema:value 10.1007/bf00275687
61 rdf:type schema:PropertyValue
62 N30ecbc047cd544b6aa400fc330336d20 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
63 schema:name Animals
64 rdf:type schema:DefinedTerm
65 N33e6ee6f896e4928bb2dbfc206937574 schema:name pubmed_id
66 schema:value 7153672
67 rdf:type schema:PropertyValue
68 N5aefeccc894e4cd7a4a8f6c7b2c4d1d2 schema:name dimensions_id
69 schema:value pub.1041038550
70 rdf:type schema:PropertyValue
71 N7e6c1231d3ec4606b4bfaf7505022269 schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 N8f2a55804c91486d9381ecb924dbe911 schema:volumeNumber 15
74 rdf:type schema:PublicationVolume
75 N8f4418a58e344404ae646077e6bbae60 schema:issueNumber 3
76 rdf:type schema:PublicationIssue
77 N94066da24a2743f4ae0fb535aa4e387b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Models, Neurological
79 rdf:type schema:DefinedTerm
80 N97927ecc429d40cda60561803d0b54e1 rdf:first sg:person.01111267524.42
81 rdf:rest rdf:nil
82 Nb2d712d4bc894f1884b114ae01b89793 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Mathematics
84 rdf:type schema:DefinedTerm
85 Nc25f983299154fe68a7ab781eafda7e8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Neurons
87 rdf:type schema:DefinedTerm
88 Ne5b23f6786454fce823aeb8ff19c68db schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Synapses
90 rdf:type schema:DefinedTerm
91 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
92 schema:name Mathematical Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
95 schema:name Biological Sciences
96 rdf:type schema:DefinedTerm
97 sg:journal.1081642 schema:issn 0303-6812
98 1432-1416
99 schema:name Journal of Mathematical Biology
100 schema:publisher Springer Nature
101 rdf:type schema:Periodical
102 sg:person.01111267524.42 schema:affiliation grid-institutes:grid.9668.1
103 schema:familyName Oja
104 schema:givenName Erkki
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111267524.42
106 rdf:type schema:Person
107 sg:pub.10.1007/978-1-4684-9352-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019074520
108 https://doi.org/10.1007/978-1-4684-9352-8
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/bf00288907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020503948
111 https://doi.org/10.1007/bf00288907
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/bf00319777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026631832
114 https://doi.org/10.1007/bf00319777
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/bf00337288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009635558
117 https://doi.org/10.1007/bf00337288
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/bf00337414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027306129
120 https://doi.org/10.1007/bf00337414
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/bf00337432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044501062
123 https://doi.org/10.1007/bf00337432
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/bf02459570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026163953
126 https://doi.org/10.1007/bf02459570
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/bf02478259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028715170
129 https://doi.org/10.1007/bf02478259
130 rdf:type schema:CreativeWork
131 sg:pub.10.1007/bf03380115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084017657
132 https://doi.org/10.1007/bf03380115
133 rdf:type schema:CreativeWork
134 grid-institutes:grid.9668.1 schema:alternateName Institute of Mathematics, University of Kuopio, 70100, Kuopio 10, Finland
135 schema:name Institute of Mathematics, University of Kuopio, 70100, Kuopio 10, Finland
136 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...