Hybrid prediction in maize. Genetical effects and environmental variations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1972-01

AUTHORS

E. Ottaviano, M. Sari Gorla

ABSTRACT

This paper proposes a method for predicting the performance of multiple cross hybrids on the basis of single cross information, taking into account the specific interaction of the genotypes with the environment.In the prediction model the genetical constants are those used for combining ability analysis, while genotype-environmental interaction terms are defined as linear regression of the genotypical effects on environmental variables.The model was tested by considering the variations arising from the effects of population density; therefore the method was applied in a situation in which the problem was to select the best hybrid-population density combinations.The results obtained show that the model is suitable to represent phenotypical response across densities.However, the material used was not the most suitable to emphasize the improvement of the predictive power of the function when genotype-environmental parameters are considered. More... »

PAGES

346-350

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00275359

DOI

http://dx.doi.org/10.1007/bf00275359

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1078842338

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24429487


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/07", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Agricultural and Veterinary Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Istituto di Genetica, Universit\u00e0 di Milano, Italy", 
          "id": "http://www.grid.ac/institutes/grid.4708.b", 
          "name": [
            "Istituto di Genetica, Universit\u00e0 di Milano, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ottaviano", 
        "givenName": "E.", 
        "id": "sg:person.0651750517.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651750517.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto di Genetica, Universit\u00e0 di Milano, Italy", 
          "id": "http://www.grid.ac/institutes/grid.4708.b", 
          "name": [
            "Istituto di Genetica, Universit\u00e0 di Milano, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gorla", 
        "givenName": "M. Sari", 
        "id": "sg:person.013327445223.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013327445223.84"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/hdy.1968.71", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029625017", 
          "https://doi.org/10.1038/hdy.1968.71"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1966.40", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001265037", 
          "https://doi.org/10.1038/hdy.1966.40"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00934196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040467797", 
          "https://doi.org/10.1007/bf00934196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1971.67", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028554296", 
          "https://doi.org/10.1038/hdy.1971.67"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1966.41", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011527418", 
          "https://doi.org/10.1038/hdy.1966.41"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1968.48", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015741953", 
          "https://doi.org/10.1038/hdy.1968.48"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1970.42", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045063736", 
          "https://doi.org/10.1038/hdy.1970.42"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1970.50", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023759897", 
          "https://doi.org/10.1038/hdy.1970.50"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1969.11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018340652", 
          "https://doi.org/10.1038/hdy.1969.11"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1972-01", 
    "datePublishedReg": "1972-01-01", 
    "description": "This paper proposes a method for predicting the performance of multiple cross hybrids on the basis of single cross information, taking into account the specific interaction of the genotypes with the environment.In the prediction model the genetical constants are those used for combining ability analysis, while genotype-environmental interaction terms are defined as linear regression of the genotypical effects on environmental variables.The model was tested by considering the variations arising from the effects of population density; therefore the method was applied in a situation in which the problem was to select the best hybrid-population density combinations.The results obtained show that the model is suitable to represent phenotypical response across densities.However, the material used was not the most suitable to emphasize the improvement of the predictive power of the function when genotype-environmental parameters are considered.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf00275359", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135804", 
        "issn": [
          "0040-5752", 
          "1432-2242"
        ], 
        "name": "Theoretical and Applied Genetics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "42"
      }
    ], 
    "keywords": [
      "prediction model", 
      "density", 
      "density combinations", 
      "model", 
      "materials", 
      "method", 
      "performance", 
      "power", 
      "hybrid prediction", 
      "parameters", 
      "cross information", 
      "variation", 
      "effect", 
      "prediction", 
      "interaction terms", 
      "account", 
      "improvement", 
      "hybrids", 
      "environment", 
      "linear regression", 
      "problem", 
      "results", 
      "genetical effects", 
      "constants", 
      "terms", 
      "combination", 
      "predictive power", 
      "analysis", 
      "interaction", 
      "variables", 
      "basis", 
      "specific interactions", 
      "ability analysis", 
      "situation", 
      "function", 
      "information", 
      "response", 
      "environmental variation", 
      "regression", 
      "environmental variables", 
      "population density", 
      "phenotypical response", 
      "maize", 
      "cross hybrids", 
      "genotypes", 
      "paper"
    ], 
    "name": "Hybrid prediction in maize. Genetical effects and environmental variations", 
    "pagination": "346-350", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1078842338"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00275359"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24429487"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00275359", 
      "https://app.dimensions.ai/details/publication/pub.1078842338"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_135.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf00275359"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00275359'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00275359'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00275359'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00275359'


 

This table displays all metadata directly associated to this object as RDF triples.

155 TRIPLES      22 PREDICATES      83 URIs      65 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00275359 schema:about anzsrc-for:06
2 anzsrc-for:07
3 anzsrc-for:10
4 schema:author N9d9bdaee50264d58b3da7e1eecd899a1
5 schema:citation sg:pub.10.1007/bf00934196
6 sg:pub.10.1038/hdy.1966.40
7 sg:pub.10.1038/hdy.1966.41
8 sg:pub.10.1038/hdy.1968.48
9 sg:pub.10.1038/hdy.1968.71
10 sg:pub.10.1038/hdy.1969.11
11 sg:pub.10.1038/hdy.1970.42
12 sg:pub.10.1038/hdy.1970.50
13 sg:pub.10.1038/hdy.1971.67
14 schema:datePublished 1972-01
15 schema:datePublishedReg 1972-01-01
16 schema:description This paper proposes a method for predicting the performance of multiple cross hybrids on the basis of single cross information, taking into account the specific interaction of the genotypes with the environment.In the prediction model the genetical constants are those used for combining ability analysis, while genotype-environmental interaction terms are defined as linear regression of the genotypical effects on environmental variables.The model was tested by considering the variations arising from the effects of population density; therefore the method was applied in a situation in which the problem was to select the best hybrid-population density combinations.The results obtained show that the model is suitable to represent phenotypical response across densities.However, the material used was not the most suitable to emphasize the improvement of the predictive power of the function when genotype-environmental parameters are considered.
17 schema:genre article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N35663eeffbfa4db5af282c45715230e9
21 Nd73e888f2c7d406a8a6cce8a4ae5206c
22 sg:journal.1135804
23 schema:keywords ability analysis
24 account
25 analysis
26 basis
27 combination
28 constants
29 cross hybrids
30 cross information
31 density
32 density combinations
33 effect
34 environment
35 environmental variables
36 environmental variation
37 function
38 genetical effects
39 genotypes
40 hybrid prediction
41 hybrids
42 improvement
43 information
44 interaction
45 interaction terms
46 linear regression
47 maize
48 materials
49 method
50 model
51 paper
52 parameters
53 performance
54 phenotypical response
55 population density
56 power
57 prediction
58 prediction model
59 predictive power
60 problem
61 regression
62 response
63 results
64 situation
65 specific interactions
66 terms
67 variables
68 variation
69 schema:name Hybrid prediction in maize. Genetical effects and environmental variations
70 schema:pagination 346-350
71 schema:productId N1d333f61b750445d96cb56decc67845b
72 N8b33a4815e024efa88e891516292961e
73 Nb0024185cbe24cf6ad8184d632cd1d20
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078842338
75 https://doi.org/10.1007/bf00275359
76 schema:sdDatePublished 2022-05-20T07:17
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher N56e2985d44e6464bb56423c11fa34d0c
79 schema:url https://doi.org/10.1007/bf00275359
80 sgo:license sg:explorer/license/
81 sgo:sdDataset articles
82 rdf:type schema:ScholarlyArticle
83 N1d333f61b750445d96cb56decc67845b schema:name doi
84 schema:value 10.1007/bf00275359
85 rdf:type schema:PropertyValue
86 N35663eeffbfa4db5af282c45715230e9 schema:volumeNumber 42
87 rdf:type schema:PublicationVolume
88 N56e2985d44e6464bb56423c11fa34d0c schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 N8b33a4815e024efa88e891516292961e schema:name pubmed_id
91 schema:value 24429487
92 rdf:type schema:PropertyValue
93 N9d9bdaee50264d58b3da7e1eecd899a1 rdf:first sg:person.0651750517.40
94 rdf:rest Nb9f200ead58c4d4188ec5ea060bbf3a5
95 Nb0024185cbe24cf6ad8184d632cd1d20 schema:name dimensions_id
96 schema:value pub.1078842338
97 rdf:type schema:PropertyValue
98 Nb9f200ead58c4d4188ec5ea060bbf3a5 rdf:first sg:person.013327445223.84
99 rdf:rest rdf:nil
100 Nd73e888f2c7d406a8a6cce8a4ae5206c schema:issueNumber 8
101 rdf:type schema:PublicationIssue
102 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
103 schema:name Biological Sciences
104 rdf:type schema:DefinedTerm
105 anzsrc-for:07 schema:inDefinedTermSet anzsrc-for:
106 schema:name Agricultural and Veterinary Sciences
107 rdf:type schema:DefinedTerm
108 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
109 schema:name Technology
110 rdf:type schema:DefinedTerm
111 sg:journal.1135804 schema:issn 0040-5752
112 1432-2242
113 schema:name Theoretical and Applied Genetics
114 schema:publisher Springer Nature
115 rdf:type schema:Periodical
116 sg:person.013327445223.84 schema:affiliation grid-institutes:grid.4708.b
117 schema:familyName Gorla
118 schema:givenName M. Sari
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013327445223.84
120 rdf:type schema:Person
121 sg:person.0651750517.40 schema:affiliation grid-institutes:grid.4708.b
122 schema:familyName Ottaviano
123 schema:givenName E.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651750517.40
125 rdf:type schema:Person
126 sg:pub.10.1007/bf00934196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040467797
127 https://doi.org/10.1007/bf00934196
128 rdf:type schema:CreativeWork
129 sg:pub.10.1038/hdy.1966.40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001265037
130 https://doi.org/10.1038/hdy.1966.40
131 rdf:type schema:CreativeWork
132 sg:pub.10.1038/hdy.1966.41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011527418
133 https://doi.org/10.1038/hdy.1966.41
134 rdf:type schema:CreativeWork
135 sg:pub.10.1038/hdy.1968.48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015741953
136 https://doi.org/10.1038/hdy.1968.48
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/hdy.1968.71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029625017
139 https://doi.org/10.1038/hdy.1968.71
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/hdy.1969.11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018340652
142 https://doi.org/10.1038/hdy.1969.11
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/hdy.1970.42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045063736
145 https://doi.org/10.1038/hdy.1970.42
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/hdy.1970.50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023759897
148 https://doi.org/10.1038/hdy.1970.50
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/hdy.1971.67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028554296
151 https://doi.org/10.1038/hdy.1971.67
152 rdf:type schema:CreativeWork
153 grid-institutes:grid.4708.b schema:alternateName Istituto di Genetica, Università di Milano, Italy
154 schema:name Istituto di Genetica, Università di Milano, Italy
155 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...