Hybrid prediction in maize. Genetical effects and environmental variations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1972-01

AUTHORS

E. Ottaviano, M. Sari Gorla

ABSTRACT

This paper proposes a method for predicting the performance of multiple cross hybrids on the basis of single cross information, taking into account the specific interaction of the genotypes with the environment.In the prediction model the genetical constants are those used for combining ability analysis, while genotype-environmental interaction terms are defined as linear regression of the genotypical effects on environmental variables.The model was tested by considering the variations arising from the effects of population density; therefore the method was applied in a situation in which the problem was to select the best hybrid-population density combinations.The results obtained show that the model is suitable to represent phenotypical response across densities.However, the material used was not the most suitable to emphasize the improvement of the predictive power of the function when genotype-environmental parameters are considered. More... »

PAGES

346-350

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00275359

DOI

http://dx.doi.org/10.1007/bf00275359

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1078842338

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24429487


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/07", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Agricultural and Veterinary Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Istituto di Genetica, Universit\u00e0 di Milano, Italy", 
          "id": "http://www.grid.ac/institutes/grid.4708.b", 
          "name": [
            "Istituto di Genetica, Universit\u00e0 di Milano, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ottaviano", 
        "givenName": "E.", 
        "id": "sg:person.0651750517.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651750517.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Istituto di Genetica, Universit\u00e0 di Milano, Italy", 
          "id": "http://www.grid.ac/institutes/grid.4708.b", 
          "name": [
            "Istituto di Genetica, Universit\u00e0 di Milano, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gorla", 
        "givenName": "M. Sari", 
        "id": "sg:person.013327445223.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013327445223.84"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/hdy.1966.41", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011527418", 
          "https://doi.org/10.1038/hdy.1966.41"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1970.42", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045063736", 
          "https://doi.org/10.1038/hdy.1970.42"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1968.48", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015741953", 
          "https://doi.org/10.1038/hdy.1968.48"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1970.50", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023759897", 
          "https://doi.org/10.1038/hdy.1970.50"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1968.71", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029625017", 
          "https://doi.org/10.1038/hdy.1968.71"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1971.67", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028554296", 
          "https://doi.org/10.1038/hdy.1971.67"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1966.40", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001265037", 
          "https://doi.org/10.1038/hdy.1966.40"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00934196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040467797", 
          "https://doi.org/10.1007/bf00934196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/hdy.1969.11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018340652", 
          "https://doi.org/10.1038/hdy.1969.11"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1972-01", 
    "datePublishedReg": "1972-01-01", 
    "description": "This paper proposes a method for predicting the performance of multiple cross hybrids on the basis of single cross information, taking into account the specific interaction of the genotypes with the environment.In the prediction model the genetical constants are those used for combining ability analysis, while genotype-environmental interaction terms are defined as linear regression of the genotypical effects on environmental variables.The model was tested by considering the variations arising from the effects of population density; therefore the method was applied in a situation in which the problem was to select the best hybrid-population density combinations.The results obtained show that the model is suitable to represent phenotypical response across densities.However, the material used was not the most suitable to emphasize the improvement of the predictive power of the function when genotype-environmental parameters are considered.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/bf00275359", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135804", 
        "issn": [
          "0040-5752", 
          "1432-2242"
        ], 
        "name": "Theoretical and Applied Genetics", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "42"
      }
    ], 
    "keywords": [
      "prediction model", 
      "density", 
      "density combinations", 
      "model", 
      "materials", 
      "method", 
      "performance", 
      "power", 
      "hybrid prediction", 
      "parameters", 
      "cross information", 
      "variation", 
      "effect", 
      "prediction", 
      "interaction terms", 
      "account", 
      "improvement", 
      "hybrids", 
      "environment", 
      "linear regression", 
      "problem", 
      "results", 
      "genetical effects", 
      "constants", 
      "terms", 
      "combination", 
      "predictive power", 
      "analysis", 
      "interaction", 
      "variables", 
      "basis", 
      "specific interactions", 
      "ability analysis", 
      "situation", 
      "function", 
      "information", 
      "response", 
      "environmental variation", 
      "regression", 
      "environmental variables", 
      "population density", 
      "phenotypical response", 
      "maize", 
      "cross hybrids", 
      "genotypes", 
      "paper", 
      "multiple cross hybrids", 
      "single cross information", 
      "genetical constants", 
      "genotype-environmental interaction terms", 
      "genotypical effects", 
      "best hybrid-population density combinations", 
      "hybrid-population density combinations", 
      "genotype-environmental parameters"
    ], 
    "name": "Hybrid prediction in maize. Genetical effects and environmental variations", 
    "pagination": "346-350", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1078842338"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00275359"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24429487"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00275359", 
      "https://app.dimensions.ai/details/publication/pub.1078842338"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_126.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/bf00275359"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00275359'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00275359'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00275359'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00275359'


 

This table displays all metadata directly associated to this object as RDF triples.

163 TRIPLES      22 PREDICATES      91 URIs      73 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00275359 schema:about anzsrc-for:06
2 anzsrc-for:07
3 anzsrc-for:10
4 schema:author Ne2911544cecf40ee892e5d5ca037296a
5 schema:citation sg:pub.10.1007/bf00934196
6 sg:pub.10.1038/hdy.1966.40
7 sg:pub.10.1038/hdy.1966.41
8 sg:pub.10.1038/hdy.1968.48
9 sg:pub.10.1038/hdy.1968.71
10 sg:pub.10.1038/hdy.1969.11
11 sg:pub.10.1038/hdy.1970.42
12 sg:pub.10.1038/hdy.1970.50
13 sg:pub.10.1038/hdy.1971.67
14 schema:datePublished 1972-01
15 schema:datePublishedReg 1972-01-01
16 schema:description This paper proposes a method for predicting the performance of multiple cross hybrids on the basis of single cross information, taking into account the specific interaction of the genotypes with the environment.In the prediction model the genetical constants are those used for combining ability analysis, while genotype-environmental interaction terms are defined as linear regression of the genotypical effects on environmental variables.The model was tested by considering the variations arising from the effects of population density; therefore the method was applied in a situation in which the problem was to select the best hybrid-population density combinations.The results obtained show that the model is suitable to represent phenotypical response across densities.However, the material used was not the most suitable to emphasize the improvement of the predictive power of the function when genotype-environmental parameters are considered.
17 schema:genre article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N57304bcf922941edb317bd738ee2a0d1
21 N575f0b7b268c462283ab43f7af28e494
22 sg:journal.1135804
23 schema:keywords ability analysis
24 account
25 analysis
26 basis
27 best hybrid-population density combinations
28 combination
29 constants
30 cross hybrids
31 cross information
32 density
33 density combinations
34 effect
35 environment
36 environmental variables
37 environmental variation
38 function
39 genetical constants
40 genetical effects
41 genotype-environmental interaction terms
42 genotype-environmental parameters
43 genotypes
44 genotypical effects
45 hybrid prediction
46 hybrid-population density combinations
47 hybrids
48 improvement
49 information
50 interaction
51 interaction terms
52 linear regression
53 maize
54 materials
55 method
56 model
57 multiple cross hybrids
58 paper
59 parameters
60 performance
61 phenotypical response
62 population density
63 power
64 prediction
65 prediction model
66 predictive power
67 problem
68 regression
69 response
70 results
71 single cross information
72 situation
73 specific interactions
74 terms
75 variables
76 variation
77 schema:name Hybrid prediction in maize. Genetical effects and environmental variations
78 schema:pagination 346-350
79 schema:productId N18b7c9528681462bb5f46d7147dece82
80 N9e4702f6852f4fc087b645ab607ca622
81 Nca47d5154bac4268bee8934e15f0688e
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078842338
83 https://doi.org/10.1007/bf00275359
84 schema:sdDatePublished 2022-01-01T18:00
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher N39ce39947170425d8ec48ef33a37b666
87 schema:url https://doi.org/10.1007/bf00275359
88 sgo:license sg:explorer/license/
89 sgo:sdDataset articles
90 rdf:type schema:ScholarlyArticle
91 N18b7c9528681462bb5f46d7147dece82 schema:name dimensions_id
92 schema:value pub.1078842338
93 rdf:type schema:PropertyValue
94 N39ce39947170425d8ec48ef33a37b666 schema:name Springer Nature - SN SciGraph project
95 rdf:type schema:Organization
96 N4c695a4b61c547e591762cd2c5c8cc71 rdf:first sg:person.013327445223.84
97 rdf:rest rdf:nil
98 N57304bcf922941edb317bd738ee2a0d1 schema:volumeNumber 42
99 rdf:type schema:PublicationVolume
100 N575f0b7b268c462283ab43f7af28e494 schema:issueNumber 8
101 rdf:type schema:PublicationIssue
102 N9e4702f6852f4fc087b645ab607ca622 schema:name pubmed_id
103 schema:value 24429487
104 rdf:type schema:PropertyValue
105 Nca47d5154bac4268bee8934e15f0688e schema:name doi
106 schema:value 10.1007/bf00275359
107 rdf:type schema:PropertyValue
108 Ne2911544cecf40ee892e5d5ca037296a rdf:first sg:person.0651750517.40
109 rdf:rest N4c695a4b61c547e591762cd2c5c8cc71
110 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
111 schema:name Biological Sciences
112 rdf:type schema:DefinedTerm
113 anzsrc-for:07 schema:inDefinedTermSet anzsrc-for:
114 schema:name Agricultural and Veterinary Sciences
115 rdf:type schema:DefinedTerm
116 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
117 schema:name Technology
118 rdf:type schema:DefinedTerm
119 sg:journal.1135804 schema:issn 0040-5752
120 1432-2242
121 schema:name Theoretical and Applied Genetics
122 schema:publisher Springer Nature
123 rdf:type schema:Periodical
124 sg:person.013327445223.84 schema:affiliation grid-institutes:grid.4708.b
125 schema:familyName Gorla
126 schema:givenName M. Sari
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013327445223.84
128 rdf:type schema:Person
129 sg:person.0651750517.40 schema:affiliation grid-institutes:grid.4708.b
130 schema:familyName Ottaviano
131 schema:givenName E.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651750517.40
133 rdf:type schema:Person
134 sg:pub.10.1007/bf00934196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040467797
135 https://doi.org/10.1007/bf00934196
136 rdf:type schema:CreativeWork
137 sg:pub.10.1038/hdy.1966.40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001265037
138 https://doi.org/10.1038/hdy.1966.40
139 rdf:type schema:CreativeWork
140 sg:pub.10.1038/hdy.1966.41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011527418
141 https://doi.org/10.1038/hdy.1966.41
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/hdy.1968.48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015741953
144 https://doi.org/10.1038/hdy.1968.48
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/hdy.1968.71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029625017
147 https://doi.org/10.1038/hdy.1968.71
148 rdf:type schema:CreativeWork
149 sg:pub.10.1038/hdy.1969.11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018340652
150 https://doi.org/10.1038/hdy.1969.11
151 rdf:type schema:CreativeWork
152 sg:pub.10.1038/hdy.1970.42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045063736
153 https://doi.org/10.1038/hdy.1970.42
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/hdy.1970.50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023759897
156 https://doi.org/10.1038/hdy.1970.50
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/hdy.1971.67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028554296
159 https://doi.org/10.1038/hdy.1971.67
160 rdf:type schema:CreativeWork
161 grid-institutes:grid.4708.b schema:alternateName Istituto di Genetica, Università di Milano, Italy
162 schema:name Istituto di Genetica, Università di Milano, Italy
163 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...