On the response output from non-linear switching elements with different types of finite dead times View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1969-09

AUTHORS

S. K. Srinivasan, R. Vasudevan

ABSTRACT

In investigating the response of systems to random input events, “dead times” in registering these events are met with, as in the case of neuronal behaviour. These situations are studied in terms of product densities making use of the renewal nature of the problem. Different types of cumulative responses of systems are investigated. Some interesting features of a system, which breaks down at a critical value of the cumulative response are analysed. More... »

PAGES

121-124

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/bf00274104

DOI

http://dx.doi.org/10.1007/bf00274104

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012415126

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/5351486


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cybernetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Neurological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neurons", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Indian Institute of Technology Madras", 
          "id": "https://www.grid.ac/institutes/grid.417969.4", 
          "name": [
            "Department of Mathematics, Indian Institute of Technology, 36, Madras, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Srinivasan", 
        "givenName": "S. K.", 
        "id": "sg:person.015232652155.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015232652155.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Mathematical Sciences", 
          "id": "https://www.grid.ac/institutes/grid.462414.1", 
          "name": [
            "The Institute of Mathematical Sciences, 20, Madras, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vasudevan", 
        "givenName": "R.", 
        "id": "sg:person.015664114672.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015664114672.93"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00288925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006416372", 
          "https://doi.org/10.1007/bf00288925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02710377", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019315678", 
          "https://doi.org/10.1007/bf02710377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02710377", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019315678", 
          "https://doi.org/10.1007/bf02710377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02748610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035697447", 
          "https://doi.org/10.1007/bf02748610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02748610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035697447", 
          "https://doi.org/10.1007/bf02748610"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-5193(61)90046-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040640000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/14786441008520370", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043169220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0305004100026153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053949057"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1969-09", 
    "datePublishedReg": "1969-09-01", 
    "description": "In investigating the response of systems to random input events, \u201cdead times\u201d in registering these events are met with, as in the case of neuronal behaviour. These situations are studied in terms of product densities making use of the renewal nature of the problem. Different types of cumulative responses of systems are investigated. Some interesting features of a system, which breaks down at a critical value of the cumulative response are analysed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/bf00274104", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1081786", 
        "issn": [
          "0023-5946"
        ], 
        "name": "Kybernetik", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "On the response output from non-linear switching elements with different types of finite dead times", 
    "pagination": "121-124", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3b2612373e1d5bea61cdd23eb3745cfbd846bd83c55931158d9d6688daaa9b0d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "5351486"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "7502604"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/bf00274104"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012415126"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/bf00274104", 
      "https://app.dimensions.ai/details/publication/pub.1012415126"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130823_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/BF00274104"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/bf00274104'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/bf00274104'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/bf00274104'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/bf00274104'


 

This table displays all metadata directly associated to this object as RDF triples.

115 TRIPLES      21 PREDICATES      39 URIs      25 LITERALS      13 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/bf00274104 schema:about N05e44b5bc78d4ccd9b5ecc1c15ba552b
2 N1200d88f33314200aa609094b82eb710
3 N1467fc9a616348069e1f92656feef5a2
4 Nfce6c426c6fe449485b2d443785c1d9e
5 anzsrc-for:17
6 anzsrc-for:1701
7 schema:author N0dea6b6b2f7c4bc3a056262064b96a11
8 schema:citation sg:pub.10.1007/bf00288925
9 sg:pub.10.1007/bf02710377
10 sg:pub.10.1007/bf02748610
11 https://doi.org/10.1016/0022-5193(61)90046-7
12 https://doi.org/10.1017/s0305004100026153
13 https://doi.org/10.1080/14786441008520370
14 schema:datePublished 1969-09
15 schema:datePublishedReg 1969-09-01
16 schema:description In investigating the response of systems to random input events, “dead times” in registering these events are met with, as in the case of neuronal behaviour. These situations are studied in terms of product densities making use of the renewal nature of the problem. Different types of cumulative responses of systems are investigated. Some interesting features of a system, which breaks down at a critical value of the cumulative response are analysed.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N13cc4ba86ca941a598e27439783fcef3
21 N7eadbe91019c4bc5a86ecb501c0c7941
22 sg:journal.1081786
23 schema:name On the response output from non-linear switching elements with different types of finite dead times
24 schema:pagination 121-124
25 schema:productId N254b2c4d1544437f85a2469b2562661b
26 N42349b8d5c614d33b9ec89e51d3484f5
27 N49f8d88cf68446b59bc5330bb94611ef
28 N92bbeb520a784e9398b882c9d3a7f33a
29 Nf455c46603634e008a571ec3245c5f9a
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012415126
31 https://doi.org/10.1007/bf00274104
32 schema:sdDatePublished 2019-04-11T13:58
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N9c7658b7b03648698f6da481acb1ea73
35 schema:url http://link.springer.com/10.1007/BF00274104
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N05e44b5bc78d4ccd9b5ecc1c15ba552b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
40 schema:name Neurons
41 rdf:type schema:DefinedTerm
42 N0dea6b6b2f7c4bc3a056262064b96a11 rdf:first sg:person.015232652155.71
43 rdf:rest Nb186bebc607d411f875e940fdedbb488
44 N1200d88f33314200aa609094b82eb710 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
45 schema:name Models, Neurological
46 rdf:type schema:DefinedTerm
47 N13cc4ba86ca941a598e27439783fcef3 schema:volumeNumber 6
48 rdf:type schema:PublicationVolume
49 N1467fc9a616348069e1f92656feef5a2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
50 schema:name Cybernetics
51 rdf:type schema:DefinedTerm
52 N254b2c4d1544437f85a2469b2562661b schema:name readcube_id
53 schema:value 3b2612373e1d5bea61cdd23eb3745cfbd846bd83c55931158d9d6688daaa9b0d
54 rdf:type schema:PropertyValue
55 N42349b8d5c614d33b9ec89e51d3484f5 schema:name dimensions_id
56 schema:value pub.1012415126
57 rdf:type schema:PropertyValue
58 N49f8d88cf68446b59bc5330bb94611ef schema:name doi
59 schema:value 10.1007/bf00274104
60 rdf:type schema:PropertyValue
61 N7eadbe91019c4bc5a86ecb501c0c7941 schema:issueNumber 4
62 rdf:type schema:PublicationIssue
63 N92bbeb520a784e9398b882c9d3a7f33a schema:name nlm_unique_id
64 schema:value 7502604
65 rdf:type schema:PropertyValue
66 N9c7658b7b03648698f6da481acb1ea73 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 Nb186bebc607d411f875e940fdedbb488 rdf:first sg:person.015664114672.93
69 rdf:rest rdf:nil
70 Nf455c46603634e008a571ec3245c5f9a schema:name pubmed_id
71 schema:value 5351486
72 rdf:type schema:PropertyValue
73 Nfce6c426c6fe449485b2d443785c1d9e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
74 schema:name Humans
75 rdf:type schema:DefinedTerm
76 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
77 schema:name Psychology and Cognitive Sciences
78 rdf:type schema:DefinedTerm
79 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
80 schema:name Psychology
81 rdf:type schema:DefinedTerm
82 sg:journal.1081786 schema:issn 0023-5946
83 schema:name Kybernetik
84 rdf:type schema:Periodical
85 sg:person.015232652155.71 schema:affiliation https://www.grid.ac/institutes/grid.417969.4
86 schema:familyName Srinivasan
87 schema:givenName S. K.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015232652155.71
89 rdf:type schema:Person
90 sg:person.015664114672.93 schema:affiliation https://www.grid.ac/institutes/grid.462414.1
91 schema:familyName Vasudevan
92 schema:givenName R.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015664114672.93
94 rdf:type schema:Person
95 sg:pub.10.1007/bf00288925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006416372
96 https://doi.org/10.1007/bf00288925
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/bf02710377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019315678
99 https://doi.org/10.1007/bf02710377
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/bf02748610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035697447
102 https://doi.org/10.1007/bf02748610
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/0022-5193(61)90046-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040640000
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1017/s0305004100026153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053949057
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1080/14786441008520370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043169220
109 rdf:type schema:CreativeWork
110 https://www.grid.ac/institutes/grid.417969.4 schema:alternateName Indian Institute of Technology Madras
111 schema:name Department of Mathematics, Indian Institute of Technology, 36, Madras, India
112 rdf:type schema:Organization
113 https://www.grid.ac/institutes/grid.462414.1 schema:alternateName Institute of Mathematical Sciences
114 schema:name The Institute of Mathematical Sciences, 20, Madras, India
115 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...